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Abstract

Adversarial online linear optimization (OLO) is essentially about making performance tradeoffs with
respect to the unknown difficulty of the adversary. In the setting of one-dimensional fixed-time OLO
on a bounded domain, it has been observed since Cover [Cov66] that achievable tradeoffs are governed
by probabilistic inequalities, and these descriptive results can be converted into algorithms via dynamic
programming, which, however, is not computationally efficient. We address this limitation by showing
that Stein’s method, a classical framework underlying the proofs of probabilistic limit theorems, can be
operationalized as computationally efficient OLO algorithms. The associated regret and total loss upper
bounds are “additively sharp”, meaning that they surpass the conventional big-O optimality and match
normal-approximation-based lower bounds by additive lower order terms. Our construction is inspired by the
remarkably clean proof of a Wasserstein martingale central limit theorem (CLT) due to Réllin [Rol18].

Several concrete benefits can be obtained from this general technique. First, with the same computational
complexity, the proposed algorithm improves upon the total loss upper bounds of online gradient descent
(OGD) and multiplicative weight update (MWU). Second, our algorithm can realize a continuum of optimal
two-point tradeoffs between the total loss and the maximum regret over comparators, improving upon prior
works in parameter-free online learning. Third, by allowing the adversary to randomize on an unbounded
support, we achieve sharp in-expectation performance guarantees for OLO with noisy feedback.

1 Introduction

We study a fundamental protocol in adversarial online learning: one-dimensional fixed-time online linear
optimization (OLO) on a bounded domain. With a time horizon T' € Ny, it is a repeated game between an
algorithm we design and an adversary. The algorithm is defined by a sequence of functions (a¢)¢cj1.7], where
each a; : R~ — [—1,1] can depend on T. The adversary is defined by another sequence of functions (It)teq:1)»
where each I; : R = R can depend on T and the algorithm (a¢);cq1.77. In each (the t-th; ¢ € [1: T7]) round,

e The algorithm picks the decision zy = a;(g1.¢—1) € [-1,1].
e The adversary picks the loss gradient g; = l;(z1.4) € R.
e The algorithm observes g; and then suffers the linear loss gyx;.

At the end of the game, the performance of the algorithm is measured by its total loss, Lossy := ZtT:l g1, lower
is better. A real world example is sequential betting: x; is the amount of money a gambler bets on the negativity
of g¢, and with the instantaneous payoff being —g;x;, the total amount of money they make is —Losst.

For intuition, let us briefly assume g; € [—1, 1] such that the worst case adversary would pick g; = sign(z;).
It is clear that optimizing only for this worst case would trivialize the problem, since the minimax-optimal
algorithm is forced to always pick x; = 0. The convention instead is to simultaneously consider adversaries with
varied difficulty: although any nontrivial algorithm should suffer positive Loss in the worst case, one could
indeed expect negative Losst if the adversary ends up being easy. Therefore every algorithm should realize
a tradeoff, just like in betting where higher profits necessarily comes with higher risks. The objective is thus
achieving suitable notions of “admissibility”, in the sense that no other algorithm can always guarantee lower
Lossy regardless of the adversary.



Rigorously studying this objective motivates a common surrogate performance metric called the regret: for
all u € [—1,1] called a comparator, the regret of the algorithm with respect to u is defined as Regret;(u) :=
ZZ;I gt(x¢ — ). If an algorithm guarantees Regrety(u) < v (u) for some proper, closed and convex function
r i [=1,1] = (=00, 00],! then with the convex and 1-Lipschitz function 1% : R — R being the convex conjugate
of ¢, Lossy can be upper-bounded by the oracle inequality

Lossy < mf“]Kth)quwT )]SUPK th>u1/)T )]1/1% (Zm)- (1)

Since (¢5.)* = v, the total loss bound conversely implies the regret bound, and this two-way relation is called
the loss-regret duality [MO14] (Lemma G.5). The idea is that upper-bounding the surrogate Regret,(u) is
equivalent to upper-bounding Losst itself in an adversary-dependent manner, where the cumulative bias Z;‘ll Gt
can be used to quantify the difficulty of the adversary.? We will adopt this “loss-centric” viewpoint to characterize
performance tradeoffs in OLO, whose relation to the conventional view of regret minimization is demonstrated
through the following example.

Example 1 (Uniform regret). Consider the following definition which we call the uniform regret,

unif

Regretm™ := sup Regrety(u) = max {Regret;(—1), Regret,(1)}.
uwe[—1,1]

Any regret bound Regret(u) < ¥ (u) can be converted into a uniform regret bound Regrety™ < SUPye(_1,1) Y7 (u),
whose right hand side, if finite, can be regarded as a function Y3 invariant to its argument. Then, an upper
bound on Losst is induced by the convex conjugate of Wyt (ywrif)* (s) = |s| — SUpye(—1,1] ¥r(u). Despite being
weaker than ¥k, i.e., (W¥PN)*(s) < % (s) for all s € R, this is a convenient relavation adopted by most prior
works, especially due to its connection to uniform convergence in statistical learning. See, e.g., [RS14].

This work presents computationally efficient algorithms achieving general and sharp upper bound functions
on Regret,(u) and Lossr. En route, we introduce the techniques of Stein’s method [Ste72, Ste86] to adversarial
online learning and demonstrate intriguing algorithmic connections between sharp rates and central limit theorems
(CLTs).

1.1 Motivation

To concretely motivate our results, we start from a central problem of the field: characterizing the conditions on
. for the achievability of Eq.(1) against a large class of adversaries. In the special case of Boolean adversaries,
the following landmark result is due to Cover [Cov66, Statement V].

Theorem 1 (Cover’s characterization, adapted). Assume that g; € {—1,1} for all t € [1 : T, and define
RS(n) as the distribution of the sum of n independent Rademacher random variables. Then, for all conver and
1-Lipschitz function ¢ : R — (—o00, 00|, there exists an algorithm achieving the total loss bound Eq.(1) if and
only if

Ex~rs(m[r(X)] <0. (2)

In particular, the corresponding algorithm outputs the expectation of a discrete derivative,

Tt :77]EX~RST t) |"l/JT (Zgl‘i’X‘i’l) *1,[):1‘: (iglJer)], Vte[lT] (3)

i=1 =1

The necessity of Eq.(2) is straightforward, since any gambler cannot expect to make profit when the nature
is uniformly random. Truly remarkable is the sufficiency of Eq.(2), proved constructively by Eq.(3). The
construction reveals a fundamental dynamic programming principle which has inspired numerous subsequent

IDefined as co outside [—1, 1] following the convention.
2Intuitively, a larger |Z$:1 gt| means the adversary is more biased thus easier for the algorithm to exploit. Therefore in Eq.(1),
the typical 17, function of interest would be an even function minimized at 0, meaning the loss bound is maximized at 23:1 gt = 0.
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Figure 1: Comparison of the prefactors of v/7T' in the regret bounds of our algorithm (denoted by Yauper(u, a)),
OGD (denoted by yoap (u, @)), and Cover’s algorithm (the optimal u-independent prefactor \/? ; computationally

T b
efficient versions are provided by [KKW20, GHP22]). u is the comparator and « is the scaling factor of the
learning rate; see Section 4.2 for definitions. Left: with o = 1, YHuber (4, @) and yoap (u, @) are compared as
functions of u, lower is better. Our regret bound dominates that of OGD for all v € [—1, 1], while the optimal
u-independent bound does not. Middle: with a = 5, the improvement over OGD becomes more significant.

Right: the margin of improvement Gapgap (@) := yoap (4, &) — Yruber (U, @) as a function of .

works connecting repeated games, stochastic analysis and partial differential equations (PDEs) [CBL06, RS14,
KP17, DK20, HLPR23]. Based on that Cover proved the following in the same paper: still assuming g; € {—1,1}

for all ¢, an instantiation of Eq.(3) achieves the uniform regret bound Regret%nif <4/ %T + 1, where the leading

constant \/E cannot be improved further. This is better than the best known Regre‘c%nif < /T bound of online

™

gradient descent (OGD) [Zin03], and when adapted to the problem of learning from expert advice (LEA) with two
experts, it is also better than the uniform regret bound of multiplicative weight update (MWU) [LW94, AHK12].

However, a crucial limitation of Cover’s algorithm is the computation. While OGD and MWU both take
O(1) time per round, exactly evaluating Eq.(3) requires sweeping over the size-(T — ¢ + 1) support of RS(T — t)
therefore is O(T') time. Such a gap becomes more evident if g; € {—¢ey,e¢} for some distinct e1,...,e7 € Ryp:
the distribution underlying the accordingly generalized Eq.(3) has support size 27—, making the computation of
x4 exponential-time. Furthermore, Cover’s algorithm requires the prior knowledge of |g;| for all ¢, whereas OGD
and MWU require only upper bounds on these |g;|, at most.> The intuition is that some kind of continuous
approximation is necessary, but a general, sharp and analytically scalable solution remains challenging.

e A natural attempt motivated by CLTs would be replacing the distribution RS(T — ¢) in Eq.(3) by the
normal N'(0,T — t), such that computing the Gaussian integral Ex o, 7—¢)[¢7 (s + X)] can be assumed
to take O(1) time. The Lipschitzness of 47 gives the normal approximation error [Ex o, 7—¢[¥7 (s +
X)] = Ex~rsr—t[¥7(s + X)]|= O(1),Vs € R [Zhul4, Theorem 2], but simply combining it with Eq.(3)
introduces O(T') cumulative error in the associated regret and total loss bounds.

e Existing works [KKW20, GHP22] refined this idea for the special case of Example 1. Building on the
relation between (y4F)* and the absolute value function, the proposed algorithms are based on querying the
error function erf : R — R which is computationally efficient. Via specialized Taylor-approximation-based

proofs, they also match the leading %T term in Cover’s uniform regret bound against the larger class of
gt € [—1, 1] adversaries.

An immediate follow-up question is whether other additively sharp guarantees beyond Example 1 can be
efficiently realized. Here “additively sharp” means that the obtained upper bound on Losst should be away from
a probabilistic achievability boundary (e.g., Eq.(2)) by additive, rather than multiplicative, lower order factors.
As motivated previously, this corresponds to the efficient and near-optimal realization of general performance
tradeoffs, which is of central importance in OLO. Moreover, both OGD and MWU are by default equipped with

3 Adaptive versions of OGD and MWU such as ADAGRAD [DHS11] do not require a priori upper bounds on |g¢|. The price to pay
is a larger leading constant in the regret bound. These are orthogonal to the focus of our work.



certain comparator-dependent regret bound Regret,(u) < 91 (u), therefore instead of beating their respective
relaxation Regreti™ < SUpye(_1,1) ¥r(u) which is certainly a loose baseline, it is more sensible to compare the
regret bound to such ¥ functions and aim for pointwise dominance (see Figure 1, Left). By the loss-regret
duality, this will ultimately ensure a dominance on the corresponding Lossy upper bounds.

In this work we present a solution to this problem, among others. The connection to normal approxima-
tion motivates the use of Stein’s method, a classical analytical framework underlying various nonasymptotic,
quantitative versions of CLTs.

1.2 Summary of Results

Quantitative This subsection assumes g; € [—1,1] for all ¢ unless stated otherwise. Our main result is a
normal-approximation-based characterization of performance tradeoffs in OLO.

Theorem 2 (Theorem 3 and 4, informal). Let ¢} : R — R be an arbitrary convex and 1-Lipschitz function
satisfying Ex o,y [¥7(X)] = 0. There exists an O(1)-time-per-round algorithm (Algorithm 1) guaranteeing

T

Lossy < —7. (— th> + O(logT),

t=1
while it is impossible for any algorithm to guarantee Lossp < —k(— EZ;I gt) — Q(1).

Compared to Cover’s characterization (Theorem 1), the above result overcomes the computational limitation
of dynamic programming at the price of an O(log T') gap between the upper and lower bounds. Since the ¥
function typically grows with rate @(\/T), such a gap is on a lower order, meaning that the upper bound is
“additively sharp”. Based on this master theorem, the following corollaries and extensions are obtained.

e Dominating OGD and MWU. For any hyperparameter a € R+, a special case of our algorithm guarantees
Regret,(u) < Yauber (4, @)VT + O(log T), where the prefactor of /T is given by

u? 1 1 1 1 1
uber (1) = g (“ a) ? (a> e (a> T

This is compared to the OGD baseline with constant learning rate a/v/T, whose best known regret bound

has the classical v/ T-prefactor yoap(u, @) = (e~ !u? + a). We show that Yiuper (4, @) < Yoan (u, @) for

all u € [-1,1] and a € Ry, and furthermore, lim,— o0 YHuber (¥, @) = \/g while lim, 00 YoaD (4, @) = 0.

Combined with Eq.(1), it means the total loss upper bound of our algorithm dominates that of OGD,
and their gap can be arbitrarily large. In contrast, improving the uniform regret bound of OGD as in
[KKW20, GHP22] does not warrant such a dominance. Details are provided in Section 4, and see Figure 1
for visualizations.

The same argument can be applied to improve the MWU baseline. Notably, a quantitative separation is
obtained by comparing the regret upper bound of our algorithm to an existing regret lower bound of MWU
[GPS17]. See Appendix C.

e Loss versus uniform regret. Within performance tradeoffs in OLO, a notable special case first studied
by Even-Dar et al. [EDKMWO08] is the optimal “two-point” tradeoff between Lossr and Regret%ﬂif7 ie.,
the regret with respect to the average comparator u = 0 versus the best comparator v € {—1,1}. With
®: R — (0,1) being the standard normal CDF, we show that for any constant e € (0, /5], an instantiation
of our algorithm guarantees both Lossy < ev/T 4+ O(log T') and Regrets™ < 4()v/T + O(log T'), where
v(e) € [/, 00) is the unique solution of the equation ff;/(s) ®(x)dz = § and cannot be improved further.
This improves upon the state-of-the-art approach combining an unconstrained “parameter-free” OLO
algorithm [ZCP22] with a constrained-to-unconstrained reduction [CO18]. See Appendix D.

e Noisy feedback. Existing additively sharp guarantees as well as our results above are based on the
assumption of deterministically bounded adversaries. To build an even stronger parallel relation with CLTs,



we further allow the adversary to randomize on an unbounded domain, thereby giving sharp in-expectation
performance guarantees for OLO with noisy feedback. Despite the differences in their settings, the obtained
result can be viewed as the algorithmic analogue of a nonasymptotic Wasserstein martingale CLT [R6118],
which is of notable conceptual value. See Appendix E.

Methodological Our results are enabled by introducing Stein’s method [Ste72] to OLO. For context, Stein’s
method refers to a collection of differential-operator-based techniques characterizing the distance of a distribution
to a reference, such as the normal. Within probability theory, it is a canonical framework for proving quantitative
limit theorems [CGS10, NP12], often being simpler than the Taylor-approximation-based alternatives. Our
key observation is that the strengths of Stein’s method are highly congruent with the analytical difficulties in
OLO, such that the proofs of certain probabilistic limit theorems, which are “descriptive” in nature, can be
operationalized as “prescriptive” OLO algorithms with sharp rates. Specifically for this work, our construction
parallels the remarkably clean proof of a Wasserstein martingale CLT due to Rollin [R6118], while we believe the
applicability of this idea extends much further. See Section 3.

1.3 Organization

Section 2 introduces the template of our algorithm, followed by the analysis in Section 3 which is the crux of this
work. Section 4 presents an instantiation of the algorithm improving upon OGD. Section 5 concludes this work
and discusses future directions. Other quantitative results and discussions of related works are deferred to the
appendix; see the beginning of the appendix for its organization.

Notation Z represents the standard normal random variable with cumulative distribution function (CDF)
® and probability density function (PDF) ¢. More generally, ®, , and ¢, , represent the CDF and PDF of
N (p,02). For all Lebesgue-measurable f : R — R, let || f|| := esssup,cp |f(x)| be its essential supremum norm
(with respect to the Lebesgue measure). Let Ilj, 4 () = argmin, ¢, ;) [u — x| be the projection function to the
interval [a,b]. For integers a < b, [a : b] and z,. respectively denote the tuples [a,...,b] and [z,,...,xp]. Let
01 and O be the partial derivatives of a function with respect to the first and the second argument; similarly,
011, 012, 09 are the second order partial derivatives.

2 Algorithm

Stein equation We begin by introducing the key element of Stein’s method, Stein equation and its solution.
Appendix B provides the minimal technical background to keep the present work self-contained, while interested
readers are referred to several canonical resources for comprehensive treatments [CGS10, Rosll, NP12].

Definition 2.1 (Solution of Stein equation). Let h: R — R be a conver and 1-Lipschitz function. For all u € R
and o € Ry, consider the linear ordinary differential equation

o?f'(x) = (x = p)f(x) = Mx) = Ezononlhlp +0Z)], VoeR, (4)

called the Stein equation associated with the distribution N (u1,0?) and the target function h. It has a unique
bounded solution, and we denote it by f,on: R — R.

The function f, »n can be expressed as integrals using h, but due to the modularity of Stein’s method, our
analysis is performed at an abstract level without using h-specific structures. This is a major benefit of Stein’s
method over more granular alternatives.

We also note the following properties of f, 5. Due to the Lipschitzness of h, the derivative f;w, ;, is Lipschitz,
therefore the second derivative f”@h exists almost everywhere [NP12, Proposition 3.5.1]. Likewise, h’ exists
almost everywhere and ||A/|| equals the minimum Lipschitz constant of h. A concept called Stein factors
[Gau25] refers to upper bounds on || fyo,nllocs ||, 51 lloc and |[f}] , ,lloc expressed using [|h'||; see Lemma B.2.

We will immediately use || fu.o.nll, < [|P][, < 1.




Algorithm 1 1D fixed-time bounded-domain OLO via Stein’s method.
Require: A convex and 1-Lipschitz function i : R — R.

1: Define sy := 0, and pick an arbitrary py € R<.
2. fort=1,...,7T do
3:  Pick an arbitrary p; € [0, ps—1], and we further require p; > 0 if t < T. Define ¢; := p?_; — p7 € Rxo.
4:  Based on the function f, ,» from Definition 2.1, output
2t =Ezn01) [foimpoah(se-1+ pe2)] - (5)
This is a valid output on the domain [—1, 1] since ||fs, 1 p,_1,hllcc< 1.
5:  Observe the loss gradient g; € R and define s; := s;_1 + g; € R.
6: end for

Algorithm With the above, we present Algorithm 1. A number of remarks are in order.

e The function h serves as a proxy of ¥, from the targeted Eq.(1), specifying the desirable tradeoff on the
total loss. The algorithm is invariant to vertical shifts on h, i.e., h(z) + h(x) + constant for all x € R.

e The parameter p; serves as a guess on the adversary’s “standard deviation to go”, 1/2?:t 41 g%, and it

is allowed to depend on g1.;—1. Requiring p; > 0 for all ¢ < T is to ensure the well-posedness of Eq.(5).
Analogously, the induced ¢; = p? | — p? is a guess on the adversary’s instantaneous variance, g2.

For intuition, if it is known that |g¢| < 1 for all ¢, then one could simply set p; = /T — ¢ thus ¢; = 1. We
remark that in its full generality, hard constraints on the adversary are not required, as the associated
performance guarantee (Theorem 3) will hold against arbitrary unconstrained adversaries, taking the
misspecification error of pg.r into account.

While the output Eq.(5) itself is sufficient for our analysis, its reliance on f, 5, may obfuscate the intuition.
The following lemma spells out the explicit dependence of x; on the function h, and based on that, we discuss
the intuition by analyzing its small-c; approximation.

Lemma 2.1 (Lemma G.1, simplified). Let Exp(1) be the exponential distribution with parameter 1. The output
Eq.(5) of Algorithm 1 is equivalent to

Ty = —Ez N (0,1);7~Exp(1) [h/ <5t—1 + \/mz)] :

Suppose for some t € [1: T] we have p;_1 = VT —t+ 1 and ¢; = 0. By Lemma 2.1, z; = —Ez[h/(s;—1 +
VT —t+17)], which we define as the output Z; of a simpler, ¢;-independent analogue of Algorithm 1. This can
be justified from the following two perspectives.

Universality and regularization The fundamental difficulty in OLO originates from the uncertainty in the
adversary. Consider the ¢-th round where g1.;—1 is known but g;7 is not. If the algorithm is given the oracle
knowledge that g;.7 is sampled iid from a known distribution D, then the distribution of Zthl g¢ is also known.
z¢ can then be assigned as the expectation of the best-in-hindsight decision, z; <+ E[arg min, ¢_y ] Zle grul.
Tie-breaking of arg min is arbitrary assuming the density exists.

The intuition of Z; follows from this idea, but with two more ingredients. First, if CLT can be applied, then
the distribution of Zthl g: is insensitive to D, as it can be approximated by N (s;—1,T —t+1) as long as T > t.
This embodies the universality principle in high-dimensional probability [0’D14, VH14]. Second, the function h
introduces certain inductive bias, therefore the algorithm should minimize the regularized objective,

Ty = Exn(s, 1, 7—t+1) |argmin Xu + h*(—u)| = —Ez[W' (si—1 + VT —t +12Z)]. (6)

u€[—1,1]

Picking h(s) = |s| gives a constant convex conjugate h*, corresponding to the case without regularization.



Continuous time dynamics Another interpretation of Z; is via the potential method in online learning
[CBLO6, Ora25]. Let o7 : (—o0,T] x R — R be the heat potential

or(t,s) :=Ez[h(s+ VT —tZ)],

which is the unique solution of the backward heat equation (BHE) (91 + 3052)¢r = 0 under the terminal condition
o7 (T, s) = h(s). It is straightforward to verify &; = —0a¢7(t — 1, s¢—1). This is the continuous time limit of the
potential method, whose idea underlies a growing stream of recent works on better-than-big-O rates in OLO
[DK20, KKW20, GHP22, ZCP22, HLPR23, HLP24, ZYCP24]. It is also connected to Eq.(6) via the equivalence
between the potential method and the Follow the Regularized Leader (FTRL) algorithm on linear losses [Ora25,
Section 7.3].

Going from Z; to z;, the key challenge is rigorously accounting for nonzero ¢;. In particular, the bottleneck
has been the discretization argument: showing that a suitable modification of #; (equivalently, a numerical
scheme on the BHE) works well against discrete time adversaries. Stein’s method offers substantial advantages
for this purpose.

Computational complexity By Lemma 2.1, z; can be implemented by a two-dimensional Gaussian quadrature
whose time complexity is independent of ¢t and 7. Assuming this computational subroutine is exact (which is the
convention of the field), the conclusion is that Algorithm 1 takes O(1) time per round. In addition, the h function
of interest is sometimes simple enough such that z; can be explicitly reduced to common Gaussian-integral-type
special functions. Examples include the error function and the Owen’s T function, for which fast and stable
specialized implementations exist. This is demonstrated through concrete special cases in Appendix H.

3 Analysis

The main result of this work is Theorem 3, the total loss upper bound of Algorithm 1. An equivalent regret bound
follows from the loss-regret duality (Corollary 15 in Appendix G). Applications and extensions are presented in
Section 4, Appendix C, Appendix D and Appendix E.

Theorem 3 (Main result; upper bound on Lossr). Against all adversaries (potentially unbounded a priori),
Algorithm 1 given any convexr and 1-Lipschitz function h guarantees

T T
2 max{g? — ¢, 0 2t |ge| + |g3
h th-i-pTZ ‘HEZ[h(,OoZ)]—i-Z “ {gi t }+ ara |t| .
t=1 t=1 ™ Pt—1

Lossy < —Ez .
Pr—1
::_J’}(— Ez;l gt) =:errr

To parse this result, we divide the RHS into two parts, respectively defined as —1/3}(— EZ;I g¢) and errr.

o —k(— 2321 gt) is the primary component of the bound due to the continuous time dynamics of the OLO
game. The most interpretable case is when pr = 0 and h is even, meaning that the function % is a vertical
shift of h. Generally, ¥4 mirrors 12 from the targeted total loss bound Eq.(1): it is convex, 1-Lipschitz,
and analogous to Cover’s achievability condition Eq.(2) we have Ex. 0,52 p2) [4%(X)] = 0. Achieving

Lossy < —15}(— Zf:l g¢) would be ideal, but as discussed previously, additional discretization error is
necessary. Controlling this error has been the bottleneck in prior works.

e The key value of Theorem 3 is showing that the discretization error errp of Algorithm 1 can be controlled
uniformly over all convex and Lipschitz h functions. Moreover, errp is a lower order term against many
constrained adversary classes, thereby addressing the aforementioned bottleneck. For example, against the
simple adversary class satisfying |g;| < 1 for all ¢, setting h(z) = |z| and p; = /T —t in Algorithm 1 gives

Ui (s) = |s| — /2T for all s € R while erry = O(log T). This corresponds to the particular performance
tradeoff in Example 1; also see Section 4.1 for the equivalent argument on the regret.
The following result shows that against adversaries satisfying |g:| < 1, Theorem 3 with p; = /T — ¢ is optimal

modulo the additive O(logT)) factor. The proof is based on the standard nonasymptotic Wasserstein CLT for iid
sums (e.g., [Rosll, Theorem 3.2]), presented in Appendix G.



Theorem 4 (Lower bound on Lossr). There exists an absolute constant ¢ > 0 such that the following holds.
For any OLO algorithm and any 1-Lipschitz function h : R — R, there exists a Boolean adversary (g: € {—1,1}
for all t) inducing

T
Lossr > —h (Z gt> + Ez[h(ﬁZ)] —
t=1

Technical sketch The crux of this work is the proof of Theorem 3, which is short and considerably different
from all known analyses in OLO. It is inspired by the work of Réllin [R6118] combining Lindeberg’s method and
Stein’s method to prove a quantitative (i.e., nonasymptotic) Wasserstein martingale CLT; that is, bounding the
1-Wasserstein distance between a martingale and an appropriately scaled normal distribution.

By its dual representation, the 1-Wasserstein distance is an integral probability metric over the class of
1-Lipschitz functions. Fixing any function h in this class, our key observation is that it is still valid to apply
Rollin’s argument on arbitrary data sequences generated by the OLO adversary. While such sequences are not
martingales, the difference in the analysis is an additional bias term which is precisely the Lossy induced by
Algorithm 1. In other words, Theorem 3 (and its generalization allowing randomized adversaries) may be viewed
as an algorithmic analogue of Rollin’s CLT, where the function h associated with the algorithm serves as the
witness function measuring the statistical distance. This will be further discussed in Appendix E.

While the 1-Wasserstein distance is defined over all 1-Lipschitz functions, in Theorem 3 we also require h
to be convex, differing from Rollin’s argument in the probabilistic context. This is motivated by the duality
argument from Section 1, and technically, it ensures that the function f, , 5 is nonincreasing, leading to a low
erry through Eq.(8) in the proof. Nonconvex performance tradeoffs in OLO is generally a more delicate subject,
which we further discuss in Appendix F.

Proof of Theorem 8. The proof is divided into the following steps. It uses several standard technical lemmas of
Stein’s method, provided in Appendix B.

Step 1 The first step is the telescoping argument from Lindeberg’s method. Let Zj, ..., Zr be a sequence of
iid standard normal random variables. For all ¢ € [0 : T], define

T

me = pro+ Y (gilli <t + VG Zidli > 1)) £ s+ poZs,
=1

where £ denotes the equality of marginal distributions (with respect to the randomness of Zy.7). Starting from

the telescopic sum h(mr) — h(mg) = ZtT:l (h(my) — h(mg—1)), we take the expectation with respect to Zy.p to
obtain

Ez,

T
h <Z gt + PTZT>

t=1

T

=Ez, [h(poZo)] + Z Ez, [h (st + peZe)] =Bz, [h(se-1 + pe-1Zi-1)]) . (7)
t=1

From this point the subscript of Z is dropped.

Step 2 The next step is using the Stein equation and Stein’s lemma (Lemma B.1) to simplify the expression
under the sum for each ¢ € [1: T]. Since f, » 5 satisfies the Stein equation Eq.(4),

Piaf s pen(@) = (@ = se-1)for s pimrn(2) = h(z) = Ez [h(si-1 + pe-1Z)], Vo €R.
Plugging in x < sy + p;Z and taking the expectation with respect to Z,
Ez [h(st + piZ)] —Ez [h(si—1 + p1—12))

Pr Sty (St peZ) = (se 4 peZ = 54-1) fsy1.pir.n (5t + pr2)

I
= =

Z

Z [thst 1,0t—1,h St +pt )_gtht—l,Pt—lyh(St +ptZ)i|



FE2 [0yt 2Z) = piZ o s (504 pi2)] (Lemma B.1)

=0

On the last line, the integrability assumption required by Lemma B.1 follows from Lemma B.2 (Stein factors).

Step 3 The final step is plugging in Stein factors and exploiting the convexity of h. Recall that f/
absolutely continuous. By Taylor’s theorem with integral remainder,

tlptlhs

f;t—lvptflvh(st_kptz):fét 1,pt— 1h(8t 1+ piZ +gt/ fét 1,pt—1,h (St—1+ptz+/\gt)d)"

fst—l:Ptflvh(St + ptZ) = fst—lypt—lyh(8t71 + Pt ) + gtfstfl’Ptflyh(stfl + ptZ)
1
1Y R AR T S VALY
0
Therefore, combining the above,

Ez [h(st + piZ)] = Ez [h(st-1 + pt-12)]
= =9t Ez [forrpiosn(5t=1 +peZ)] + (¢t — g7 )Ez |:fo e (St—1 +ptZ)}

=Tt =:A
1 1
+Ez [Ctgt/ fo vpein(Stm1+peZ + Agy) dX — 9t3/ (L= Nfe e n(st-1 4+ peZ + Age) dA|
0 0
=:0
For the terms A and ¢ on the RHS, we use Lemma B.2 (Stein factors) and Lemma B.3 (f;, |, | ;, is non-positive),
2 2
A< 7pt71 : max{gt — Ct, 0}7 (8)
3
o < 2o 2\gt!/ D 2 \gt\ﬂgt!
i1 PP Pi1
Combining all three steps completes the proof. O

4 Application: Dominating OGD

This section instantiates our results with specific A functions. We will assume |g;| < 1 for simplicity, therefore
setting p; = VT —t gives errr = O(logT). Proofs are deferred to Appendix G, and the closed forms of the
output x; are presented in Appendix H.

4.1 Absolute Value Function

As a warm-up, picking h(z) = |z| corresponds to minimizing the uniform regret in Example 1. The following

regret bound matches existing ones [KKW20, GHP22] in the optimal leading order term %T.

Corollary 5 (Regret: absolute value). Assume |g/| < 1 for all t. If h(z) = |z|, then Algorithm 1 with

pt = V1T —t guarantees

Regrety(u) < Regrety™ < \/ET +O(logT), Yue[-1,1].
71'



4.2 Huber Function
A highlight of this work is picking h as the Huber function, whose inductive bias matches that of the OGD

baseline. The following regret bound generalizes Corollary 5 in the limit of n — co. By the regret version of
Theorem 4 (Corollary 16 in Appendix G), it cannot be improved by Q(log T') uniformly over v € [—1,1].
Corollary 6 (Regret: Huber). Assume |g;| <1 for all t. If h(z) = 222 - 1{|z| < n~ '] + (Jz| - ﬁ) A|z| >0
forn = % and o € Rsg, then Algorithm 1 with p, = /T — t guarantees

Resrto £ [ 2+ (1) (1) w0 (D) - o 1] VE+ otam, vie (1)

=YHuber (U,)

Since the algorithm takes O(1) time per round, we compare it to the OGD baseline with constant learning
[0

rate n = Vi which outputs z; = Iy (x¢—1 —ngt—1). Against the same adversary class, the OGD baseline

guarantees Regrety(u) < 1(a™u + a)VT [Ora25, Theorem 2.13], where the prefactor of /T’ will be denoted as
~voap (4, ). To our knowledge, this is the sharpest known regret bound of OGD that depends on u, @ and T'.
As O(logT) in Corollary 6 is a lower order term, we focus on the prefactors of v/T and define the margin of

impT‘OUement as
G ( ) : ( ) er ( ) - 1 - *1 — @ —
I OGD ) - YOGD ua (07 YHub u, (6% @] + (]) .

The following observations can be made; also see Figure 1 in Section 1 for visualizations.

e Consistent with its notation, Gappap (@) is independent of u, and it is always positive due to a standard
Mills ratio estimate (Lemma G.7). Therefore Corollary 6 dominates the regret bound of OGD for all
u € [—1, 1], while they are both incomparable to sharp uniform regret bounds, including our Corollary 5
and the results of [KKW20, GHP22]. By Eq.(1), this ensures that the Lossr upper bound of our algorithm
is lower than that of OGD regardless of Zle g; — that is, regardless of the difficulty of the adversary.

o Gapgep(a) grows unboundedly with a. For all v € [—1, 1], yoap(u, o) diverges as o — oo, while

lim Yiuper (4, @) = lim « {cp ((11) — @(0)} +¢ (;) =2¢(0) = g,

a—r 00 a—r 00 T
recovering Corollary 5.

e To reason about the “effective learning rate” of our algorithm, consider #; from Eq.(6) which is the small-¢;
approximation of the output z;. Suppose for simplicity that s;—1 = 0 for some ¢ € [1 : T]. By symmetry,
we have Z; = 0, meaning that z;;1 only depends on ¢;, n and p;. Linearizing it with respect to g, gives
(see Remark H.1 for derivation)

z z n erf< ! )g + o(g:t)
t+1 — Tg = =1 t t)-
V2np,

Treating the absolute value of the linear coefficient as the effective learning rate, we see that it is increasing
with respect to ¢ and eventually reaches the nominal value 7, the learning rate of the OGD baseline. This
is different from typical OLO algorithms where the learning rate is constant (if 7' is known) or decreasing
(if T is unknown).

Other interesting cases of h are analyzed in the appendix.

5 Conclusion

Utilizing Stein’s method, this paper presents a general, sharp and analytically scalable framework to design and
analyze OLO algorithms. Inspired by Rollin’s proof of a Wasserstein martingale CLT [R6118], our main result

10



is a computationally efficient improvement to a seminal dynamic programming algorithm by Cover [Cov66].
Starting from there, we demonstrate a number of more specific quantitative benefits, including (i) dominating
the total loss upper bounds of OGD and MWU; (i4) achieving optimal tradeoffs between the total loss and the
uniform regret; and (¢i7) handling OLO with noisy feedback. Together, they imply an intriguing algorithmic
relation between adversarial online learning and probabilistic limit theorems, whose applicability might extend
much further.

This work only studies the basic setting of OLO with a one-dimensional bounded domain and a known time
horizon. Generalizing such conditions (that is, achieving additively sharp rates while allowing general dimension,
unknown time horizon or unbounded domain) would be a highly valuable direction for future works. Other than
OLO, the idea of universality may also benefit online learning problems with curved losses or bandit feedback,
where little is known about better-than-big-O optimality. Finally, besides giving improvements to existing
problems, we hope the connection to probabilistic limit theorems could help motivate and answer new problems
in adversarial online learning, such as operationalizing the Kolmogorov distance versions of the martingale CLT.
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Appendix

Organization Appendix A discusses related works, followed by the preliminaries of Stein’s method in Ap-
pendix B. Appendix C continues the argument in Section 4, showing that a special case of Algorithm 1 improves
upon MWU. Appendix D shows that Algorithm 1 can attain a continuum of optimal two-point tradeoffs between
Lossy and Regret%nif. Appendix E extends our results to OLO with noisy feedback and further compares our
result to Rollin’s martingale CLT. Appendix F discusses the generalization to nonconvex performance tradeoffs
in OLO. Appendix G contains omitted proofs. Finally, Appendix H presents the closed-form expressions of f, »n

and x; in special cases, thus improving the concreteness of our algorithm.

A Related Works

From a quantitative perspective, our work is related to two general research themes in online learning: (i)
achieving leading-constant-optimal upper bounds on the uniform regret; and (i) achieving comparator-dependent
regret bounds. Besides those, from a methodological perspective, our work touches upon the deep connection
between adversarial online learning and martingale inequalities. The latter has been studied by a line of works
whose objectives and techniques are very different from ours.

Sharp uniform regret bounds Consider the uniform regret Regret%“if from Example 1 which is the maximum
of the regret over all comparators. While most works focus on the conventional big-O optimality when bounding
the Regret%nif7 here we note several exceptional settings where sharper bounds have been achieved. Specifically
for Regret%nif7 this precisely means achieving the optimal constant multiplier on the leading order term of the
bound, without being subsumed by big O.

As discussed in Section 1.1, for the known-horizon version of OLO on a one-dimensional bounded domain
(i.e., the setting of this work), [Cov66] gave the first algorithm achieving the optimal leading constant, and
computational efficient improvements were later given by [KKW20, GHP22]. Generalizing the domain to higher
dimensions while still achieving the leading constant optimality is however a delicate subject requiring a careful
treatment of the shape of the domain.

e The simple case is the d-dimensional Euclidean norm ball: for any d > 2, [ABRTO08] showed that OGD
with constant learning rate achieves the optimal constant multiplier in front of the leading order term /7.

e The difficult case is the d-dimensional probability simplex (that is, the LEA problem with d experts):
MWU with constant learning rate is leading-constant-optimal in the regime of both d — co and T' — oo
[CBL06, Theorem 3.7]. Only taking T' — oo, precisely leading-constant-optimal algorithms for d = 2, 3,4
are give by [Cov66], [GPS16] and [BEZ20] respectively. The regime in between remains open.

In a different direction, [HLPR23] achieved leading constant optimality for the anytime version of OLO (i.e., T is
unknown by the algorithm) on a one-dimensional bounded domain. A common technical theme shared by these
recent progresses is a continuous time perspective on the OLO problem, pioneered by [Zhul4, DK20, HLPR23]
and realized by tools from PDE and stochastic analysis. The bottleneck is the discretization argument on the
PDE, discussed in Section 2, for which Stein’s method offers analytical advantages.

Parameter-free OLO Going beyond the uniform regret, there is a subfield within OLO studying the realization
of u-dependent upper bounds on Regret,(u). Depending on the context, this is often called parameter-free online
learning or comparator-adaptive online learning. See [Ora25, Section 10] for an exposition.

A key motivation of this topic originates from the practical need to handle unbounded domains. In one
dimension, it means the domain of the algorithm is R as opposed to [—1,1]. The definition of lziegret%“if becomes
vacuous, therefore the typical quantitative objective is to achieve a u-dependent upper bound on Regret,(u)
whose dependence on both |u| — oo and T — oo is asymptotically optimal. Based on a similar technical
backbone as [HLPR23], an algorithm with the optimal leading constant is given by [ZCP22]. Such results are
also meaningful for the settings with a bounded domain, due to a projection technique of [CO18] showing that if
a particular u-dependent regret bound is achievable in the unconstrained setting for all © € R, then it is also
achievable in the constrained setting for all u within the domain of the algorithm.
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Compared to the state of the art in parameter-free OLO, our work has a subtle but important difference:
rather than considering both |u| — oo and T' — oo, we keep u fixed on a bounded domain and only consider the
asymptotic regime of T'— oco. Via the loss-regret duality (Lemma G.5), this is closely related to the objectives
of [Cov66], which we use to motivate our techniques. Appendix D shows that an application of such techniques
improves upon the combination of [ZCP22] and [CO18].

Connection to martingale concentration Conceptually, our work can be viewed as another evidence of the
deep connection between adversarial online learning and martingale inequalities. In a broader context, such
a connection has been studied by many others, including [RS17, FRS18, JO19, 0J23, WSR24, AR25], just to
name a few. There is also an emerging field called game-theoretic probability [SV19] dedicated to the systematic
study of this connection.

Our work differs from the mentioned works in several major aspects. The most notable one is that while
these works have characterized various intriguing relations between game-theoretic regret bounds and martingale
concentration inequalities (e.g., exponential tail probability bounds), we focus on such a relation with martingale
CLTs on the probabilistic side. This allows us to obtain OLO algorithms with additively sharp rates which is
beyond the reach of existing concentration-based arguments; for example, the seminal work of [RS17] proposed
a conversion from martingale concentration inequalities to the achievability of certain regret bounds, which,
as noted by the authors, pays a price through the multiplying constants. Other differences include: (i) using
Stein’s method in adversarial online learning has not been considered by prior works; and (i4) we emphasize the
somewhat unusual perspective of total loss minimization in OLO which includes uniform regret minimization as
a special case, while the latter is often the starting point of the works mentioned above.

B Preliminaries of Stein’s Method

This section presents the preliminaries of Stein’s method, based on [CGS10, NP12].

Stein’s lemma The motivation of Stein’s method comes from the celebrated Stein’s lemma. We only need its
special case for one-dimensional normal distributions [CGS10, Lemma 2.1].

Lemma B.1 (Stein’s lemma). Let X ~ N (u,0?). For all absolutely continuous function f : R — R such that
E[|f'(X)]] < oo, we have
o?E[f'(X)] = E[(X — p) f(X)].

Solution of Stein equation Consider the Stein equation Eq.(4) with a convex 1-Lipschitz function h,
o2 f/(z) — (@ — 1) f(x) = h(x) — Exlh(u + 02)], V€ R.

With a change of variable from the special case of p =0 and ¢ = 1 [NP12, Proposition 3.2.2 and Remark 3.2.4],
it is a standard fact that the unique bounded solution f, 5 is given by the two equivalent expressions,

fnon@) = s [ ()~ Ealhl+ 0200 (2) 02 )

2o (%) J-oo
1

- / (h(2) = Ez[h(p+ 0 2)])bpo(2) dz.

Besides, the solution f, ., admits another equivalent representation through the Ornstein-Uhlenbeck (OU)
semigroup P,

(Ph)(z) :=Ey [h (u +eHx—p)+ovl— 6*2’52” ,
and since h is differentiable almost everywhere,

fuon(@ =2 [ (Ph)(@) — Bz lh(u + 02)) dr

8

o
<0
= /0 a2 (P-h)(x)dr
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:—/Ooe*TIEZ {h’ (u—i—e”(m—u)-kdmzﬂ dr. (10)
0

This is a change of variable from [NP12, Proposition 3.5.1].

Stein factors When restricted to the class of Lipschitz h functions, Stein factors refer to bounds on the
essential supremum norm of fy on, f;, ,, and f} ., via the Lipschitz constant of h. Here we present the version
from [Gau25] with a change of variable. Besides being useful for error control, it also certifies the integrability
requirement of Lemma B.1 in our analysis.

Lemma B.2 (Stein factors). For all 1-Lipschitz function h,

2
ol <1, [fonllo <y 207 Ioal <20

Monotonicity Finally, the following result states the monotonicity of f, ,» when the function A is convex
and Lipschitz. This is a straightforward observation from the semigroup representation Eq.(10) as well as the
fact that f, ,n € CL.

Lemma B.3 (Monotonicity). For all convex 1-Lipschitz function h, fli7o’h(x) <0 for all x € R.

C Application: Dominating MWU

This section further develops the argument from Section 4, showing that another special case of our algorithm
improves upon the MWU baseline. In particular, it requires setting the function h in Algorithm 1 as the
log-sum-ezp function. The following Regret,(u) upper bound is a corollary of Theorem 3, and by Corollary 16,
it cannot be improved by Q(logT') uniformly over u € [—1,1].

1 a

Corollary 7 (Regret: log-sum-exp). Assume |g/| < 1 for all t. If h(x) = ;In(cosh(nz)) for n = 77 and
a € Ryg, then Algorithm 1 with py = /T —t guarantees

Regretp(u) < % In ((14u)"™(1 —u)""") + Ez [a~ " In(cosh(aZ))] VT 4+ 0(logT), Vu e [-1,1].

=:yLsE (u,a)
In particular, the RHS follows the convention 0° = 1 when u = +1.

While the MWU baseline has been mostly studied in the so-called “expert problem”, its special case with
two experts can be equivalently adapted to our setting. This is a well-known fact, and we provide the details in
Appendix C.1 for concreteness. With the constant learning rate n = -%=, the obtained OLO algorithm guarantees

T?
[Ora25, Section 7.5]

Regretp(u) < % In (14 u) (1 —u)t =) + %a VT. (11)

=rymwu (u,@)

Relaxing this bound gives Regreti™f < [(In2)1 + 1a]VT which is tight for the MWU baseline, as [GPS17]
showed that MWU must suffer Regrety™ > |/2(In2)T even when non-increasing (as opposed to constant)
learning rates are allowed.

The insight from Section 4 carries over to the comparison between Corollary 7 and Eq.(11). Specifically, we
define the wu-independent Gapywy (@) = yawu (4, &) — vose(u, @) as the difference between the two prefactors

of VT. Lemma G.2 shows that Gapypyy () > 0 for all a > 0, and limg_s 00 YLsE(U, @) = \/g while ymwu (u, )
diverges. Analogous to Figure 1 in the main paper, results from this regime are visualized in Figure 2. Combining
it with the lower bound of [GPS17] gives a quantitative separation between our algorithm and MWU.

1
a
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Figure 2: Comparison of the prefactors of v/T in the regret bounds of our algorithm (represented by s (u, )),
OGD (represented by ymwu (u, ), and Cover’s algorithm (the optimal u-independent prefactor \/g ). Analogous

to Figure 1, but based on the log-sum-exp regime (Corollary 7). Left: with « = v/2In2 which minimizes
Supyei—1,1) YMwu (1, @), YusE(u, @) and yvwu (u, o) are compared as functions of u, lower is better. Middle: with
a =5, the gap between ymwu (u, o) and yrsg(u, @) widens. Right: the margin of improvement Gapypwy(a) 1=
ywwu (U, &) — yLse(u, @) as a function of a.

C.1 Details of the Baseline

LEA and the MWU algorithm The MWU baseline was originally designed to solve the problem of
distributional LEA, with the following definition. Consider a repeated game lasting T rounds. In each round,

e The LEA algorithm picks the decision w; € Ay, where Ay = {w € R? : ||w||, = 1,w; > 0,Vi € [1 :d]}
represents the probability simplex embedded in R?.

e The adversary picks the feedback l; € R? satisfying ||l;]| < 1.
e The LEA algorithm suffers the loss (I;, w;).

At the end of the game, the performance of the algorithm is measured by the LEA regret: for any comparator
u € Ag,
T
Regret? ™ (i) := Z (lg,wy — @)
t=1
Our work is only relevant to the case of d = 2. In this case, with the learning rate n = % where a € R+,
the MWU algorithm from [Ora25, Section 7.5] outputs

exp (—77 R lm’)
¢ exp (—77 ST lk,z’)

Tt,j =

, Vjel:2]

and guarantees the LEA regret bound (typically stated using the KL divergence)

1 1
Regret?®4 (1) < [a (@ Iniy + Gip In iy + In 2) + 24 VT, VYie A, (12)

Converting LEA to 1D OLO With the above MWU algorithm denoted as A, we use it to define the
following OLO algorithm for the setting we consider. In each round,
e Query A for its output w; € Ay, and then output z; = w1 — w2 € [—1,1] in one-dimensional OLO.

e After receiving the loss gradient g; € R in OLO, define I; = [g, —¢:] and send it to A as its t-th feedback
in LEA. As long as |g| <1, it ensures ||/l¢||., < 1.
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Furthermore, for any OLO comparator u € [—1,1], define an LEA comparator @ by 4 = 3(1 4+ u) and
Uy = %(1 — u). These procedures ensure that for all ¢ we have g:x: = (I, w;), and the total loss of the
comparators satisfies Z?:l gru = Zthl (I;, ). The point is that any achievable upper bound on Regret=** (i)
can also be realized in the OLO problem we consider, and plugging in Eq.(12) gives Eq.(11).

D Application: Trading off Total Loss and Uniform Regret

This section presents the second of the three applications summarized in Section 1.2: Algorithm 1 can achieve a
continuum of optimal two-point tradeoffs between the total loss and the uniform regret.

The motivation is the following. Our main result (Theorem 3) shows that given any convex and 1-Lipschitz h
function, Algorithm 1 guarantees additively sharp regret and total loss upper bounds, each realizing a performance
tradeoff specified by h. While different h functions are generally incomparable, a natural follow-up question
is whether one could characterize the optimal h given a reasonable preference over all possible tradeoffs. The
two-point tradeoff we consider corresponds to such a preference.

Setting Starting from the necessary notations, let alg represent the OLO algorithm and adv represent the
adversary. Throughout this section the adversary adv is assumed to satisfy g; € [~1,1] for all ¢. Fixing the

algorithm and the adversary, both the total loss Lossy and the uniform regret Regret%mf are determined, therefore

we overload such notations by Lossy(alg,adv) and Regret%ﬂif(alg7 adv) to clarify their dependencies. Similarly,
the notation Regret(u) is overloaded by Regret,(u, alg, adv).

Given any constant ¢ € (0, /7] (independent of T'), we are interested in characterizing

~(g) := limsup 1L inf {sup Regreti™ (alg, adv); sup Lossy (alg, adv) < s\/f} . (13)
T— o0 \/T alg adv adv

Here we emphasize that the supremum over adv needs to respect the boundedness assumption g; € [—1,1]. The

interpretation is that up to an additive 0(\/T) error, the optimal uniform regret bound subject to the constraint

Lossy < eVT is Regret%"if < 4(e)V/T. Furthermore, we aim to design a computationally efficient algorithm

achieving these performance guarantees.

Background Two-point tradeoffs of this flavor are ubiquitous in statistics and machine learning, such as the
tradeoff between Type-I and Type-II errors in hypothesis testing. The pioneering works of [EDKMWO08, KP11]
initiated this study in OLO, although the emphasis is on the big-O optimality rather than the leading constant
optimality in a different quantitative regime (¢ o< T~'/2 as opposed to constant ¢; also see Appendix A).
Interestingly, the algorithm of [KP11] is based on a “Stein-like” ODE, while it appears that the authors might
not be aware of this connection at the time therefore the analysis was by brute force and suboptimal. Without
considering computational efficiency, [Koo13] characterized a similar optimality frontier in the two-expert LEA
problem, by passing a Cover-style achievability condition to the T"— oo limit. A general strategy for trading off
Lossy with Regretd™ is via the combination of an unconstrained parameter-free OLO algorithm on the domain
R and a projection technique of [CO18]. This gives the state-of-the-art baseline to be introduced shortly.

Results Our first result is a lemma connecting the simultaneous achievability of upper bounds on Lossy and
unif

Regret" to the achievability of a particular u-dependent upper bound on Regret(u), possibly of independent
interest. It holds with and without the assumption of g; € [—1,1].

Lemma D.1 (Optimal two-point tradeoff via u-dependent regret bound). For any a,b € R and any OLO
algorithm alg, the following two conditions are equivalent:

1. sup, 4, Lossp(alg, adv) < a and sup,,, Regreti™ (alg, adv) < b;
2. SUP,ay ue—1,1) Regrety(u, alg,adv) < a+ (b — a)[ul.

By Lemma D.1, upper-bounding (&) from Eq.(13) can be reduced to finding the lowest J(g) such that the
regret bound Regret,(u) < [¢ + (5(g) — €) |u|]v/T can be guaranteed up to an o(v/T) additive error. This fits
into the scope of our general results: in particular, Corollary 15 (the regret version of our main theorem) shows
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that it suffices to pick the A function in Algorithm 1 as the convex conjugate of the targeted u-dependent regret
bound (viewed as a function of u). It can be verified that for any b € R, the convex conjugate of the function

f(z) = {a—|—b|m|, xz € [-1,1],

0, else

is the (vertically shifted) soft-thresholded absolute value f*(y) = —a + max{|y| — b,0}. Therefore we are
motivated to instantiate Corollary 15 with the soft-thresholded absolute value function, resulting in the following
constructive regret upper bound parameterized by a learning rate scalar .

Corollary 8 (Regret: soft-thresholded). Assume |g;| <1 for all t. If h(x) = max{|x| —n~t,0} forn = % and
a € Ryg, then Algorithm 1 with py = /T —t guarantees
2 1 1 2
Regretp(u) < [|u| + E(I) () + 2¢ (a) — a] VT 4+ O(logT), Vu e [-1,1].

(0% «

=ysTh (u,a)

The obtained Corollary 8 is analogous to Corollary 6 (the case dominating OGD) and Corollary 7 (the case
dominating MWU). In particular, they all recover the sharp uniform regret upper bound (Corollary 5, as well as
the results of [KKW20, GHP22]) when the learning rate scalar « goes to infinity. Corollary 8 is also additively
sharp due to the general regret lower bound, Corollary 16.

By reparameterizing the bound using ¢ and taking the T — oo limit, we obtain the following exact
characterization of y(g) from Eq.(13), realized by a computationally efficient algorithm.

Theorem 9 (Characterization of v(g)). For all constant € € (0, \/%], ~(g) from Eq.(13) is the unique solution

of the equation
e=v(e) e
/ O(z)de = 7

Furthermore, for all T € Ny, there exists a special case of Algorithm 1 that simultaneously guarantees Lossy <
eVT + O(log T) and Regreti™ < ~(e)vV/T + O(logT).

In retrospect, the crucial step in the above analysis is using Lemma D.1 to convert the two-point tradeoff
between Lossy and Regret}nif to a particular “continuous” tradeoff on Regret,(u), such that our general regret
upper bound (Corollary 15) and lower bound (Corollary 16) can be applied. Alternatively, one may view this
conversion from the dual perspective (i.e., total loss upper bounds), which gives another derivation of the right h
function to consider by solving an infinite-dimensional linear program. We provide a sketch of this argument in
Appendix D.1.

Comparison to baseline Prior to this work, the state-of-the-art algorithm trading off Lossy and Regret%nif
is a combination of [ZCP22] and [CO18], concretely introduced in Appendix D.1. With erfi : R — R being the

imaginary error function (i.e., erfi(z) = % Jy exp(2?)dz), such an algorithm runs in O(1) time per round while

simultaneously guaranteeing Lossy < ev/T and

Regrety™ < eV/T + V2T - erfi™? (ﬁ) (14)
o

against all adversaries satisfying g; € [—1, 1] for all ¢.

Comparing our Theorem 9 to this baseline, we see that up to additive logarithmic terms, both results guarantee
unif

the same Lossy upper bounds, but their Regrett'" bounds differ in the prefactors of VT. Demonstrating the
advantage of Theorem 9 amounts to showing

Y(e) < e+ V2 erfi”! (ﬁ) (15)

for all € € (0, \/g], which is proved in Lemma G.4. In particular, when ¢ = \/g , we have LHS = \/g while
RHS = \/% ++/2-erfi"’(1) > LHS. Also see Figure 3 for visualizations.
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Figure 3: Comparison of the prefactors of v/T in the Regreti}nif upper bound of our algorithm (LHS of Eq.(15),
represented by blue) and the baseline [CO18, ZCP22] (RHS of Eq.(15), represented by orange); lower is better.

Both are functions of € € (0, \/%] which represents the budget on Lossy. Our result dominates that of the
baseline.

D.1 Details of the Baseline

The baseline we consider starts from a constrained-to-unconstrained reduction first proposed by [CO18] and
systematically summarized in [Ora25, Section 9]. To date it has become a key element in the toolbox of online
learning. The version for our setting is the following [Ora25, Remark 9.6].

Lemma D.2 (Reduction to unconstrained OLO). Let A be an arbitrary algorithm for one-dimensional uncon-
strained OLO (i.e., x; € R as opposed to xy € [—1,1]) achieving Regretp(u) < v¥r(u) for all u € R, against all
adversaries satisfying g € [—1,1] for all t. Then, there exists an algorithm (which is a post-processed version of
A) satisfying xy € [—1,1] for all t while achieving

Regretp(u) < ¥r(u), Yue[-1,1],
against the same adversary class.

Motivated by this lemma, the main objective within the field of parameter-free online learning is to achieve
sharp comparator-dependent regret bounds on unconstrained domains. For our setting the state of the art is
[ZCP22], building on the techniques of [HLPR23]. Given a potential function defined as

o(t,s) = eVt <\/E/O\/S27 erfi(z) dz — 1> ,

the unconstrained algorithm outputs a similar discrete derivative as Cover’s algorithm Eq.(3),

t—1 t—1
1
=5 [‘P (tvzgi + 1) — ¢ (tZ% - 1)
i=1 i=1

It guarantees [ZCP22, intermediate result within Theorem 4]

eR, Viel[l:T).

Regretp(u) < eVT + |u| V2T - erfi™! ({/ETJ: > , VueR (16)

Setting |u| = 1 and combining it with Lemma D.2 results in the Eq.(14) referenced in our work.

A quantitative strength of this baseline is that Eq.(16) has the optimal constant multiplier V2 on the leading
order factor |u| /T log|u|, as |u| and T both tend to infinity. Broadly speaking, this is related to the “additive
sharpness” targeted by our work, while we study optimality in a more detailed scaling regime where u is fixed
(on a bounded domain) and only 7" — co.
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D.2 Dual Argument of Lemma D.1 via Linear Programming

In this subsection, we sketch the dual argument of Lemma D.1, converting the two-point tradeoff between Lossy
and Regret%ﬂif to a particular upper bound function on Lossy to aim for. Technically, this relies on solving an
infinite-dimensional linear program which could be of independent interest. Since our formal results are already
derived from Lemma D.1, the following sketch will omit many technical subtleties, prioritizing simplicity over
mathematical rigor.

Recall from Theorem 3 that for any convex and 1-Lipschitz function 7. : R — R satisfying Ex < ar(0,7)[¢7(X)] =

0, there exists a special case of Algorithm 1 guaranteeing

T

Losst < —k (- Z%) +O(logT)

t=1

against all adversaries satisfying g; € [~1,1] for all ¢. This is additively sharp due to Theorem 4. We are now
interested in finding the optimal tradeoff between Lossy and Regret%mf induced by such 7. functions.
For the simplicity of this sketch, we restrict the search space to 1. functions that are also even. Given this

restriction, notice that the above Lossy upper bound leads to the adversary-independent upper bound

Lossy < sup [~47 (s)] + O(log T) = —97 (0) + O(log T),
seR

as well as the uniform regret bound (via the loss-regret duality, Lemma G.5)

Regret®™ < max (v%)*(u) + O(log T)

ue{-1,1}

— sup[s — ¥(s)] + Olog T) (67 is even)
seR

= lim [s — ¢7(s)] + O(log T). (1% is 1-Lipschitz)
§—00

Omitting the additive O(logT') terms from the RHS, the task of minimizing lzlegret%nif under the constraint
Lossy < eV/T can be modeled as the following optimization problem,

FROR A [z = f@)]

st. Exno,m[f(X)] =0,
— f(0) =eVT,

f is even, convex and 1-Lipschitz.

Problem One «

The idea is that the optimal value of Problem One normalized by ﬁ gives y(¢). While additional effort is

required to formally establish their equivalence, here we do not treat such subtleties. The minimizing argument
f is the total loss upper bound function to aim for, thus also the h function to apply in Algorithm 1. The
subsequent sketch is divided into four steps.

Step 1: reformulation using derivative To simplify Problem One, notice that for all feasible function f,
the derivative f’ exists almost everywhere. Since

f(x) = £(0) + /O-T f(s)ds, VzeR,

we have

Tr—r00

hmm—funz—ﬂm+A 1 - /()] de,
Ex~nomf(X)] = 2/000 F(VT2)p(z)dz
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00 VTz
:2/0 (f(0)+/0 f(s)ds> 6(2) dz

= f(0) +2 /000 </:>° o(2) dz) f'(s)ds (swap integrals)
VT

= £(0) +2/0 [1 — <\/8Tﬂ £(s)ds.

Combining these properties, we can change the argument of Problem One from f to its derivative f’, thereby
converting the problem to the following infinite dimensional linear program that shares the same optimal value.

min sx/f—l-/ [1—g(x)]dz
g:R>0—[0,1] 0
Problem Two <

s.t. a\FT+2/OOO {1<I><ff)]g(z)dx0.

Notably, compared to Problem One, Problem Two drops the monotonicity requirement on the function g. This
is a tight relaxation which can be verified.

Step 2: the dual problem The second step is to apply the standard duality analysis from convex optimization.
With the multiplier A € R, the Lagrangian of Problem Two is

L(g,\) == eVT + /000[1 — g(x)]dz + A (2/000 {1 — (ffﬂ g(z)dz — sx/T>
= (1-\NeVT + /Ooo {1 + (2)\ — 2\ (%) - 1> g(:c)] de.

Minimizing it with respect to g : R — [0, 1] is equivalent to assigning g(x) pointwise to 0 or 1, giving the Lagrange
dual function

> x

A= min L(g,\) = 1—)\5\/T—|—-/ min{l,QA{l—@()}}dx.

a(A) 2 (9. 0) =(01-A) ; 7

Accordingly, the dual of Problem Two is maximizing ¢(\) over A € R.

Step 3: solving the dual problem Regarding this dual problem, it can be verified that the maximizing
argument satisfies A > 1. For any such A, define the notation

1
= . -1 - — >
)y =VT- - (1 2)\) >0,

such that

() = (1—A)6\fT+zA+2A/90iO [1_@ <\%)] dz.

Differentiating it gives
q’(/\)——exfT+%+2/oo {1-@(“:)] dz — 2 {1-@(“)} Oy
oA . VT VT )| oA
o x
=—5ﬁ+2/ [1—@()} dz.
. VT

The maximizing argument \* satisfies g(A*) = 0, which is equivalent to the solution of

/_(bl(l_ﬁ*) () dr = .

— 00
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Step 4: final result Summarizing the above and observing that strong duality holds, we have

q\%) —etd! <1—2/1\*>,

therefore ff;j(g) ®(x)dx = §, recovering the result from Theorem 9. Furthermore, the minimizing argument f
of Problem One is given by the soft-thresholded absolute value,

v(e) =

f(x)z—eﬁ—l—max{@—ﬁ-@‘l (1— 21\*) ,0}7 Vo € R.

This is the h function used to instantiate our algorithm in Corollary 8.

E Extension: OLO with Noisy Feedback

This section extends the algorithmic results so far to the setting with stochastic adversaries, also known as OLO
with noisy feedback. By doing this, we further develop the parallel relation between performance guarantees in
OLO and Wasserstein martingale CLTs [Ro118]. Motivations are two-fold.

e The intuition underlying the proof of our main theorem (Theorem 3) is to view the adversary’s cumulative
decision Zthl g: as a stochastic process indexed by T. After a suitable notion of bias is properly taken
care of, this can be essentially analyzed as a martingale whose normal approximation properties follow
from Stein’s method. While so far we have only considered deterministic Zthl g¢, it is natural to expect
that the same idea still works when 23:1 gt is by default a stochastic process. This section performs this
extension.

e In OLO, achievable performance guarantees are governed by the complexity of the targeted adversary class.
While typically the adversaries are constrained in a deterministic manner (e.g., by assuming g; € [—1, 1]),
an alternative setting is to impose soft, distributional constraints such that |g;| is allowed to be large (albeit
with low probability). There have been plenty of works on this extension [JO19, vdH19, ZC22, BK25, Liu25],
but to our knowledge, achieving better-than-big-O optimality remains open.

After introducing the setting, we present the extensions of our main results in Appendix E.1. The relation to
Ro6llin’s martingale CLT is discussed in Appendix E.2.

Setting With a time horizon 7' € N, let Q = R” and F = B(R”) represent the sequence space and its Borel
o-algebra. Let Gi(w) = w,w € Q,t € [1: T] be the canonical coordinate process (intuitively, the loss process
in OLO), and let F; = 0(G1,...,Gy),t € [0,T] be the canonical filtration. Consider the following interaction
between an OLO algorithm and an adversary, analogous to the deterministic setting in Section 1.

e The algorithm is defined by a sequence of Borel functions (at)te[lzT] where each a; : R®=! — [—1,1] can
depend on T'. This defines a decision process (Xt)iep.7) where

Xt(w) = at(Gl(w)a ceey thl(w))u
which is predictable with respect to (F):efo:7)-

e The adversary is defined by a probability measure P on (€2, F), which can arbitrarily depend on T" and the
algorithm (at).e(1.7)- This specifies the law of the loss process (G)ie(1.7], and by fixing the algorithm, the
law of the decision process (X¢)e[1.7] as well.

On the filtered probability space (€2, F, (Ft):c[o:1], P), the performance of the algorithm is measured by the

total loss
T

Losst = Z G X4

t=1
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which is a random variable, and the goal of the algorithm is to minimize its expectation in the same sense as in
Section 1. We use the plain [E to denote the expectation with respect to P. This is not to be confused with E
in the rest of our analysis, which takes the expectation with respect to the external randomness in Z. Picking P
as a Dirac measure essentially recovers the deterministic setting.

For notational convenience, we also write z; = X;(w) and g; = G¢(w) such that all the pathwise notations
are consistent with the deterministic setting.

OLO with noise The above is equivalent to the classical problem of OLO with noisy feedback: after a
standard deterministic adversary picks g, the algorithm observes g = g; + o where the noise o; is conditionally
zero mean, and the performance of the algorithm is evaluated by the expectation of its total loss Ele grry. We
note that our analysis does not place explicit assumptions on the tail of the noise o; (e.g., sub-Gaussianity)
which are required by typical martingale concentration inequalities. Instead, assumptions will be imposed on the
conditional moments of o;. This will be made clear in Corollary 11.

E.1 Main Result

Algorithm Consider applying Algorithm 1 to every sample path of the above stochastic setting. To prepare
for its population-level guarantees, we now reformulate the intermediate quantities of Algorithm 1 as stochastic
processes.

e On each sample path, Algorithm 1 requires picking a parameter p; based on g1, ..., g;—1. On the population
level, with p; represented by some P;(w), this amounts to the algorithm picking a predictable process
(Py)tefo:r) with respect to (F;)epo:r), such that (i) for all w € Q and t € [1: T, Py(w) € [0, P,—1(w)]; and
(i4) for all w € Q and t < T, Py(w) > 0. We note that P, is simply a positive real number.

e Accordingly, based on the pathwise quantity ¢; = p? ; — p?, we define the process (Ct)tepimy) by Cr =
P? | — P?, which is also predictable with respect to (F¢)sefo.7)-

e Finally, define the process (St)iep1:m) by St = Zthl G;.
Using these notations, applying Algorithm 1 to the stochastic setting is equivalent to the update rule

Xe=Ez [fst,l,Pt,l,h(Stfl + PtZ)] . (17)

Total loss bound A key strength of our main result (Theorem 3) is that the stated total loss bound holds
against arbitrary adversaries, including those that are unconstrained beforehand. Therefore taking the expectation
of Theorem 3 (more precisely, a partial result in its proof) leads to the following theorem.

Theorem 10 (Expected total loss bound). In the stochastic setting, against all adversaries, Algorithm 1 (i.e.,
Eq.(17)) given any convex and 1-Lipschitz function h guarantees

+ Ez[hM(P02Z)]

T 3
2 max{E[G}|Fi_1] — Ci,0} | 2C;|Gy| + |G}
" ]E; <\/; Py " Py .

Proof of Theorem 10. We start from the following partial result in the proof of Theorem 3 which holds pathwise
on the filtered probability space (2, F, (F)icp0:1), P),

E[LOSST] S —E lEZ

T
h (Z Gy + PTZ>
t=1

Ez[h(St + P:Z)] — Ez[h(St—1 + Pi_1Z)]
2C; |Gy + |G?|
P?

< —GiXi + (Cy — GHEy [ A R PtZ)] +
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Taking the expectation conditioned on F;_; before applying Lemma B.2 (Stein factors) and Lemma B.3

, . " .
(f&,_1 pr_,.n s nOD-positive) gives

E [Ez[h(St + PZ)] — Eg[h(S—1 + Pt_lZ)]‘]-"t_l]

max{E[G2|F,_1] — Ci,0}  2CE[|Gy| |Fir] + E[|G2| | F
_E[G|F 1}Xf+\f E] L“] w0}, 2GE] th;z G 1]
t—1 t—1

Plugging it back into the telescopic sum Eq.(7) from the proof of Theorem 3 and taking the expectation completes
the proof. O

Despite the generality of Theorem 10, the most interpretable case is when the second moment of G conditioned
on F;_1 is bounded by a known constant, e.g., E[G?|F;_1] < 1. In this case we obtain the following simplification
by setting P; and C; deterministically.

Corollary 11 (Bounded second moment). In the stochastic setting, if the adversary satisfies the moment
condition E[G?|Fi—1] < 1 for all t € [1 : T], then by setting P, = /T —t deterministically, Algorithm 1 (i.e.,
Eq.(17)) given any convex and 1-Lipschitz function h guarantees

E[Lossy] < El (ZGt>

The value of this total loss bound is its dependence on the first three moments of G; as opposed to more
specific tail conditions. If Gy for all ¢ € [1 : T] is supported on the interval [—1, 1], then the sum on the RHS
is O(log T'), meaning that Corollary 11 essentially recovers its deterministic counterpart (Theorem 3) against
g+ € [—1,1] adversaries which is additively sharp. We also note that just like Theorem 3, Corollary 11 holds for
all convex and 1-Lipschitz h functions, therefore results from other sections of this work can be applied in an
orthogonal manner.

2E[|G,|] + E[|G}]]

+Ez[W(VTZ)] +Z s

Without convexity Next we provide a variant of Theorem 10 to be used shortly. Notice that when proving
Theorem 10, the convexity of the h function is only used through Lemma B.3. Removing this step gives the
following analogous result without convexity, whose proof is nearly identical to that of Theorem 10. Implications
will be further discussed in Appendix F.

Theorem 12 (Variant of Theorem 10 without convexity). In the stochastic setting, against all adversaries,
Algorithm 1 (i.e., Eq.(17)) given any 1-Lipschitz function h guarantees

T
E[LOSST] < —-E EZ h (Z Gt + PTZ> + Ez[h(P()Z)]
t=1

T
2 ‘E[G%‘ftfl]_ct’ 2Ct|Gt|+|G§)|
E; <\/; P i Py .

E.2 From Total Loss Bound to Martingale CLT

The construction of our OLO algorithm is based on the remarkably clean proof of a quantitative Wasserstein
martingale CLT due to [R6118]. We now further elucidate their connection from the opposite direction, more
specifically showing that Rollin’s martingale CLT can be proved via the above Theorem 12. In this way, we
justify viewing the obtained total loss upper bounds as algorithmic analogues of the martingale CLT.

Concretely, we first restate the result of Rollin [R6118, Theorem 2.1]. For two random variables X and YV
taking values in R, define their Wasserstein distance as

dw (X,Y) := werP [E[R(X)] = E[R(Y)]],

where Lip; (R) denotes the collection of all 1-Lipschitz functions from R to R.
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Theorem 13 (Réllin’s martingale CLT). For a martingale (Lt )icn.m) adapted to the filtration (Fi)icjo.r), define
the notations Vp = Zthl E[L?|F;—1] and vy = Ethl E[L?]. Assume that Vo = vy almost surely. Then, for any

a >0,
1 T T |Lt|3
wl|—) L,Z| < 3 E — +2a .
(= 27) < i P 5smmre

Next, we give a concise rephrasing of Rollin’s original proof starting from our Theorem 12.

Proof of Theorem 13. Consider applying Theorem 12 with the loss process (G¢)¢e[1.7) being the martingale
(Lt)teqiz) from Theorem 13. The algorithm from Theorem 12 requires choosing the process (P;);e[1:7), and here

we consider equipping it with oracle knowledge: let C; = E[L2|Fi_1], Py = \/ 31—, E[L2] + a2, and thus

t t
P = P(?—ZCE: ”T‘ZE[L?U:FI]"‘@Q?

=1

Vor—Vr+a2=a, a.s.

Pr

T
P()Q_th:
t=1

The last equality is due to the assumption that V7 = vy almost surely. We note that such choices of (Ct).ep1.7)
and (P;)¢eqi.7) satisfy their respective measurability requirements. Then, Theorem 12 yields

T
h (Z L+ az>
t=1

E[L7|Fe-1] |Le| + | L}
+ Ez[h(V/vr + a?Z)] -HEZ Fia] |L | ’
where by the Lipschitzness of h,

— vp — ST E[L2|Fisy] + a2’
T T
h<ZLt+aZ> (ZLt> +Ez[laz] < El (Z >

Ez[h(Vvr +a*Z)] <Ez[h(VorZ)] +a

T

E Z LX;

t=1

<-E [Ez

—-E l]EZ + a,

Furthermore,

T T

2E[L?|Fy—1] | Le| + ’Lg‘ <E 3 ’L?‘
S oor - YL B Fi ) +a® T S or - Y2 BIL2Fi] + a2
Since (X¢)seq:7) is predictable with respect to the natural filtration (F3)ieqi:) of (Lt)ieqi.7) and the latter is

a martingale, we have E[Zthl L X;] = 0. Therefore combining the above, for any 1-Lipschitz h function we have

(5

Notice that the inequality still holds with h <— —h. Finally scaling all L; and a by \/%7 completes the proof. [

3
—Ez[h(yorZ))] <3IEZ |7 + 2a.

t=1 ”T_Zt 1E[L2|}—i71]+(12

We remark that the major technical elements of this proof are already presented in [R6118], with some of them
being classical techniques of Stein’s method (Appendix B). Nonetheless, we find it conceptually very interesting
to rephrase the proof through performance guarantees in OLO, indicating that many of their technical difficulties
are in common. A notable observation is that the instrumental OLO algorithm constructed within the proof is
allowed to have prior knowledge on the quadratic variation of the adversary, whereas in the actual OLO problem
the algorithm does not have such prior knowledge therefore the convexity of the h function becomes crucial.
Formally connecting this observation to game-theoretic probability [SV19] would be a valuable direction for
future works.

26



F Discussion of Nonconvex Tradeoffs

Deviating from the rest of this work, this section discusses nonconvex performance tradeoffs in OLO, i.e.,

achieving
T
Lossr < —Bound (— th> (18)
t=1

analogous to Eq.(1) but the function Bound : R — R here is nonconvex. Since the convex conjugate of any
function is automatically convex, the function Bound cannot be expressed as a convex conjugate 17, therefore
total loss bounds of this type cannot be recovered by regret bounds through the loss-regret duality. For such a
nonconvex tradeoff regime, existing results are scarce.

First, we note that Cover’s characterization of performance tradeoffs in OLO (Theorem 1) also works in this
nonconvex regime since the adversary is assumed to be Boolean. Concretely, the following generalization of
Theorem 1 is true: for all 1-Lipschitz function Bound : R — (—o00, 00|, there exists an algorithm achieving the
total loss bound Eq.(18) against Boolean adversaries if and only if

EXNRS(T) [BOUDd(X)} < 0.

The associated algorithm is still given by Eq.(3), and our goal is to give a computationally efficient improvement.

By inspection, the proof of our Theorem 3 only uses the convexity of the i function through Lemma B.3.
Therefore when the h function given to Algorithm 1 is 1-Lipschitz but not necessarily convex, the following
variant of Theorem 3 is immediate. Also see Theorem 12 for the analogue of this result in the stochastic setting
of OLO.

Theorem 14 (Variant of Theorem 3 without convexity). Against all adversaries (potentially unbounded a priori),
Algorithm 1 given any 1-Lipschitz function h guarantees

Lossr

T
<-Egz lh (th + PTZ>
=1

Similar to the idea of Theorem 3, the first two terms on the RHS essentially match Cover’s achievability
condition therefore constitute the ideal bound to aim for, whereas the remaining sum should be understood as
the discretization error. To maximize the interpretability, consider again the case where |g;| < 1 for all ¢ and
accordingly Algorithm 1 sets p; = 1 —t and ¢; = 1. We have

T 2 3
2 {gt - Ct| 2¢ |ge| + |gt
+Ez[h(poZ)] + — + .
)+ 3 ( o e

T

S 2¢|gi] + |97] _ O(logT)
~ 7, |

but the other part of the discretization error can only be generally bounded by

T

2 _
Z th Ct| = max]|9t2—ct| O(\/T)

T - te[L:T
—1 Pt—1 €l

While this is still a meaningful result, unless ¢; = g7 for all ¢ we can no longer argue about the additive sharpness
of the obtained total loss bound since the O(v/T) discretization error is often significant.
To summarize, in this nonconvex tradeoff regime:

e If the adversary is Boolean, then by setting p; = /T — t thus g7 = ¢, for all ¢, we obtain a computationally
efficient improvement of Cover’s algorithm, and the associated total loss bound is additively sharp (akin to
the convex tradeoff regime, Theorem 3).

e If the adversary satisfies |g:| < 1 but is not Boolean, then Cover’s total loss bound does not apply, whereas
our bound is meaningful but not additively sharp. This is due to an inflated discretization error term
related to the sequence of misspecification error | g7 — ct|.
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G Omitted Proofs

This section presents the omitted proofs thus far. Appendix G.1 proves the complete version of Lemma 2.1,
giving a more direct representation of Algorithm 1’s output. Appendix G.2 proves Theorem 4 (our general
lower bound on Losst), and then uses the loss-regret duality to convert both Theorem 3 and Theorem 4 to
matching upper and lower bounds on Regret,(u). Appendix G.3 proves the instantiations of these results on
iconic h functions. Appendix G.4 presents the omitted proofs for Appendix D. Appendix G.5 proves a number of
technical lemmas. Appendix G.6 summarizes several classical lemmas we use, whose proofs are omitted.

G.1 Rewriting the Algorithm’s Output
The following lemma is the complete version of Lemma 2.1 in Section 2.

Lemma G.1 (Rewriting the output). The output Eq.(5) of Algorithm 1 is equivalent to

1/t
Ty = —5/0 FEZ {h’ (st_l +1/p7 - Tth>} dr
= _]EZNN(O,l);T~Beta(%,1) [h/ (Stl + \/P?—1 - Tthﬂ )

as well as

Ty = 7/ e "Ey {h’ (St—l +1/p? — eQTth>} dr
0
= —Ezn(0,1);7~Exp(1) [h' <5t—1 +/Pi1 — 6_2TCtZ>] .

An immediate remark is that the integrals are well-posed: due to the Lipschitzness of I/, h’ exists almost
everywhere, and whenever h’ exists it is bounded. Therefore the expectation of I/ exists on distributions with
density.

Proof of Lemma G.1. Observe that the two equations in the lemma are equivalent by a change of variable. To
connect them to Eq.(5), the proof is divided into two parts to avoid the technical nuances of taking the p; — 0
limit. The first part tackles the degenerate case of p; = 0 by brute force, which is only possible at ¢ = T' by the
requirement of Algorithm 1. The second part tackles the nondegenerate case of p; > 0 where a more structured
continuous argument is applicable.

Part 1 If p, =0, i.e,, t =T and p7_; = ¢, then Eq.(5) becomes x4 = fs, , 5, ,.n(st—1). Using the integral
representation of the function f, ,j through the OU semigroup (Eq.(10) in Appendix B), we have

f;t,o’,h(//’f) = —/ G_TEZ |:h/ (/.L +oy1— B_QTZ):| dr.
0
Plugging in p < s;—1 and o < p;_1 results in the equivalence of Eq.(5) and the second equation of the lemma.

Part 2 Next consider p; # 0, i.e., p? | > ¢; > 0. Define the notations Y ~ N (i, 0% — ¢) for general 02 > ¢ > 0,

and u(c) := Ey[fuon(Y)] = Ez[fuon(t + Vo2 —cZ)]. The goal of Part 2 is to prove u(0) = —Ez[h/(n + 02)]
and

u(c) = _%\/E /OC %Ez {h’ (,u—&— o2 — TZ)} dr, Vce (0,0%). (19)

After that, by plugging in pu < s;_1, 0 < pr—1 and ¢ < ¢;, the LHS u(c) recovers the definition of z; in Eq.(5)
while the RHS recovers the first equation of the objective lemma. Starting from this point, the subscripts of
fu,o.n will be dropped for conciseness.

Step 1. Our first step is to differentiate the Stein equation Eq.(4) with respect to z, where all derivatives
exist almost everywhere.

(@) — (@ — p)f'(a) — f(z) = W (x), a.e.
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Taking the expectation with respect to Y ~ A (i, 0% — ¢) which is absolutely continuous w.r.t. the Lebesgue
measure,

Ey[o®f"(Y) = (Y = ) f'(Y) = f(Y)] = Ey [W(Y)].
Meanwhile, applying Stein’s lemma (Lemma B.1) to the random variable Y and the function f’(z) gives (the
integrability requirement of Lemma B.1 follows from bounds on the Stein factors, Lemma B.2)

(0 = OBy [f"(Y)] = Ex[(Y — ) f'(V)].
Combining it with the above and with u(c) = Ey [f(Y)],
Ey[ef"(Y)] = u(c) = Ey [W(Y)].

Plugging in ¢ = 0 gives u(0) = —Ez[W/ (1 + 02)].
Step 2. The second step is to consider the derivative u/(c). Differentiating the definition of u(c) =

Ez[f(p+ Vo2 —cZ)] gives

u'(c) = Ez [Zf’ (M+ o2 — cZ)} :

1
N
Applying Stein’s lemma (Lemma B.1) again to the random variable Z and the function f'(u+ vo? — cx), where
the integrability requirement again follows from Lemma B.2,

Vo2 —c-Eg [f” (u-i— Vo? —CZ)] =Egz [Zf’ (u—l— Vo2 —CZ)] ,
therefore u/(c) = —3Ey[f”(Y)] and thus we obtain the ODE
2cu/(c) +u(c) = —Ey [0 (Y)].
Step 3. To solve this ODE, we reformulate it into
ro_ 1 ! _ ! 2 _
(Veu(e))' =~ 5 By W (V)] = 5Bz W 1+ Vo =ez)],

and integrating it results in Eq.(19). O

G.2 General Regret and Total Loss Bounds

We first restate Theorem 4 and prove it as follows.

Theorem 4 (Lower bound on Lossr). There exists an absolute constant ¢ > 0 such that the following holds.
For any OLO algorithm and any 1-Lipschitz function h : R — R, there exists a Boolean adversary (g; € {—1,1}
for all t) inducing

T
Lossp > —h (Z gt> +Ez[h(VTZ)] —ec.

Proof of Theorem 4. The proof is based on a nonasymptotic Wasserstein CLT for iid sums. Recall from Section 1
that RS(n) denotes the distribution of the sum of n independent Rademacher random variables.
First, for any function h : R — R, no OLO algorithm can guarantee

T
Lossy < —h <Z gt> + Ex~rs(T) [h(X)]

t=1

against all Boolean adversaries. To see this, notice that against iid Rademacher g¢;.7, taking the expectation of
this bound would lead to the 0 < 0 contradiction.

Next, by Lemma G.6 which is due to [Rosl1], there exists an absolute constant ¢ > 0 such that for any
1-Lipschitz function h : R — R we have

Exrsr[h(X)] — Ez[h(VTZ)]| < c.

Combining it with the above impossibility argument completes the proof. O
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The following two corollaries are the regret analogues of Theorem 3 and Theorem 4. The proofs are due to
the loss-regret duality (Lemma G.5) therefore omitted.

Corollary 15 (Upper bound on Regret(u)). Algorithm 1 with pr = 0 guarantees the regret bound

T
2 2 ¢, 0} 2ct|g] + |g}
RegretT(u)Sh*(—u)+EZ[h(poZ)]+§:<\/;max{gptt lct’ I t'gpg |gt’>, Vu e [~1,1].
t=1 - t—1

Corollary 16 (Lower bound on Regrety(u)). There exists an absolute constant ¢ > 0 such that the following
statement holds. For any OLO algorithm and any convex and 1-Lipschitz function h : R — R, there exists a
Boolean adversary (g: € {—1,1} for allt) and a comparator u € [—1,1] such that

Regret,(u) > h*(—u) + Ez[h(VTZ)] — c.

G.3 Special Cases
Below we restate and prove the specializations of Corollary 15 in Section 4, Appendix C and Appendix D.

Corollary 5 (Regret: absolute value). Assume |g:| < 1 for all t. If h(zx) = |x|, then Algorithm 1 with
pt = VI —t guarantees

; 2
Regrety(u) < Regrety™ < /=T +O(logT), Vu € [~1,1].
™

Proof of Corollary 5. Starting from Corollary 15, it can be verified that h*(—u) = —h(0) = 0 for all u € [-1,1],
and Ez[h(VTZ)] = VTE[|Z|] = \/ 2T. O

Corollary 6 (Regret: Huber). Assume |g;| <1 for all t. If h(z) = 2% - 1[|z| < n7 ]+ (|z| — 55) - 1[|z] > n7]

2
forn = % and o € Rsq, then Algorithm 1 with p, = /T —t guarantees

Regretp(u) < {“2 + (a + ;) i (;) +¢ <;) — %a ~ (j VT +0(logT), Yue[-1,1].

2

=:YHuber (u,a)

Proof of Corollary 6. Starting from Corollary 15,

For all v > 0,

Therefore with v < /T and n= %7
u? 1 1 1 1 1
Regret(u) < % +nT [<I> (nﬁ) - 2] +VT¢ (nﬁ) ~ {1 - (ﬂ\/fﬂ +O(logT)
u? 1 1 1 1 1
Z{+(Oz+)@<)+¢(>_Q_}ﬁ+0(logT)~ O
2c le} o o 2 le’
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[0}

Corollary 7 (Regret: log-sum-exp). Assume |g:| < 1 for all t. If h(z) = %ln(cosh(nm)) forn = 75 and
a € Ryg, then Algorithm 1 with py = /T —t guarantees

Regretp(u) < % In ((14u)"™(1 —u)""") + Ez [a~ " In(cosh(aZ))] VT 4+ O(logT), Vu e [-1,1].

=:yLsE (u,a)
In particular, the RHS follows the convention 0° = 1 when u = %1.

Proof of Corollary 7. Starting from Corollary 15, we first consider u € (—1,1).

h*(—u) = —ux — %ln(cosh(nx))

m:% tanh~!(—u)

_ 1 —1 1 -1 _ 1

= ; |:—u tanh (_U) —In W:| (COSh(tanh (_'LL)) = \/TW)
1 1—u 1 —u

— % |:—U ln m + ln(]. — Uz):| (tanh (—'LL) = % 1 i_,’_u)

1
= 2 [(1+w)In(l+u)+ (1 —u)In(l —u)].
The case of u = £1 follows from lim, o, xInz = 0. Further plugging the definition of h into Ez[h(VTZ)]
completes the proof. O

Corollary 8 (Regret: soft-thresholded). Assume |g;| <1 for all t. If h(x) = max{|z| —n~1,0} forn= % and
a € Ryg, then Algorithm 1 with py = /T —t guarantees

(0% «

Regret (u) < ['“' + 20 (1> +2 (;) - i] VT +0(logT), Yuc[-1,1].

=ysTn(u,0)

Proof of Corollary 8. Starting from Corollary 15,

h*(—u) = sup —uz — max{|z| — n~',0} = —ux =" ul.
z€R z=—n"tsign(u)
For all v > 0,
—(vm) ™" 1 00 1
Ezh(vZ)] = / (—vz - > d(z)dz —|—/ <vz - > d(z)dz
—o0 n (vm)—1 n
v () 1o ()]
vn n vn
Substituting v « /T and n = - completes the proof. O

VT
G.4 Proofs for the Two-Point Tradeoff
Below we restate and prove the results from Appendix D.

Lemma D.1 (Optimal two-point tradeoff via u-dependent regret bound). For any a,b € R and any OLO
algorithm alg, the following two conditions are equivalent:

unif

1. sup,q, Lossr(alg,adv) < a and sup,4, Regrety™" (alg, adv) < b;

2. SUPaqy,ue[—1,1) Regrety(u, alg, adv) < a+ (b — a) |ul.
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Proof of Lemma D.1. Let us drop alg and adv from the notations. By definition, Lossy = Regret;(0) and
Regret%mf = max,¢(_1,1} Regrety(u), therefore the second condition in the lemma trivially implies the first one.

Now consider going from the first to the second:
T
Regretp(u) = Z gi(xy — u)
t=1

T T
= (1= |ul) Y giwe + [ul > gi(ae — sign(u))
t=1 t=1

< (1 - |ul)a+ |u|b. O

Theorem 9 (Characterization of v(g)). For all constant ¢ € (0, \/%], ~(g) from Eq.(13) is the unique solution

of the equation
e=(e) e
/ d(z)de = 3

Furthermore, for all T € N, there exists a special case of Algorithm 1 that simultaneously guarantees Lossp <
eVT 4+ O(log T) and Regrety™ < v(e)v'T + O(log T).

Proof of Theorem 9. Throughout this proof, let ¢ > 0 be a sufficiently large absolute constant. We only prove
matching upper and lower bounds on 7(e), since the corresponding algorithm can be simply obtained from
Corollary 8.

An upper bound on «(e) is immediate: with the hyperparameter « satisfying ystn (0, a)\/T +clogT = eVT,
applying Corollary 8 yields

1 .
~(g) = limsup —= inf {sup Regrett™f (alg, adv); sup Lossyp(alg, adv) < Eﬁ}
adv

T—o00 alg | adv

logT
< li 1,
< Jim (’YSTh( a)+c ) enn (012 g T

VT

=7stn(l, @)

YsTh(0,0)=¢

As for the lower bound, applying Corollary 16 on the h function from Corollary 8 shows that for any algorithm
alg, there exists a Boolean adversary adv and a comparator u € [—1, 1] such that

Regrety (u, alg, adv) > v (u, ) VT — c.
By Lemma D.1, this is equivalent to the violation of either

sup Lossy (alg, adv) < vt (0, 0)VT — ¢

adv
or _
sup Regret™if (alg, adv) < ysrn(1, 0)VT — c.
adv
Therefore,
. 1. unif
~(e) = limsup — inf < sup Regret" (alg, adv); sup Lossr(alg, adv) < VT
T—o0 T alg ( adv adv
c
>l 1 - —
a TEI;O <7$Th( @) \/T) ¥s7h(0,0)=e4-cT—1/2
= 17 o .
¥sth(l, @) o (00
Combining the upper and lower bounds, we have v(g) = ysrn(1, )] ~ern(0,0)=c- Finally applying Lemma G.3
completes the proof. O
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G.5 Proofs of Technical Lemmas

Our analysis uses several technical lemmas proved below.

Lemma G.2. For all a € Rso, let f(a) :=Ez [a~ ! In(cosh(aZ))]. Then, f(a) < ta and lima_,o0 f(a) = /2.

2

Proof of Lemma G.2. Starting from the first part of the lemma, applying the fact of cosh(x) < exp (%) for all
x € R\{0} gives

fla) <Egz [ozl In <exp <;a2Z2>)] = %a]EZ[ZQ} = %a.

Next, for all z € R,

1+ exp(—2a|z|)
n 5 .
Denote the second term on the RHS as g(a, ), which satisfies the pointwise convergence lim,_,o g(o, ) = 0.
Furthermore, for all a > 1 we have |g(a, )| < a™'In2 < In2, therefore by the dominated convergence theorem,
lim, 00 Ez[g(r, Z)] = 0. This leads to

a 'n(cosh(ax)) = |z| +a~'1

T 1) = B2 = 2. 0

Lemma G.3. For the quantity ystn(u,«) defined in Corollary 8, we have

YsTh(0,0) =ysTn(1,0) 1
/ O(x)dz = §’YSTh(07 ).

— 00

Proof of Lemma G.3. Recall that

YsTh (U, @) = [l + %fﬁ (i) +2¢ (1> - %,

(0% (&%

therefore Y5t (0, @) —ysTn(1, @) = —a~ . It can be simply verified that for allz € R, [*_ ®(z) dz = 2®(z)+¢(x).

Therefore
/7(1 B(z)dz = —é(l) (—i) ) (—;) - —é {1 — 9 (;)} +o (;) - %'YSTh(Oaa)- 0

Lemma G.4. For all € € (0, \/g], ~(g) defined in Eq.(13) satisfies

2
() —e< V2 erfi™t <\/\/77:5> .
Proof of Lemma G.4. It suffices to prove

e—v(¢g) —V/2-erfi”?! ‘/EE
/ O(x)dz > / (\ﬁ ) O (z)de,

— 00

— 00

where LHS = § by Theorem 9. By a change of variable z = erfi? (%), this is further equivalent to proving

V32
erﬁ(z)/_ i O(z)dr < \/z7 Vz > erfiv'(1). (20)

To this end, notice that for all z < 0 we have

/_w O(2)dz = 2P(x) + ¢(x)
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= 2[l = &(=z)] + ¢(-x)
< 2¢(—x). (Mills ratio bound; Lemma G.7)

Therefore the LHS of Eq.(20) is upper-bounded by

erfi(z) /\/iz ®(z) dr < 2erfi(2)p(V2z) = \/Zexp(zz) /OZ exp(x?) dx < \/z O

—0o0

G.6 Summary of Existing Lemmas

This subsection summarizes several known results from the literature, whose proofs are omitted.

The first one is a formal version of the loss-regret duality [Ora25, Theorem 10.6] used throughout our analysis.
Notice that if the function ¥ has a convex and compact domain, then the following lemma can still be applied
by assigning ¥ as oo outside its domain, which is standard.

Lemma G.5 (Loss-regret duality). Let ¢ : R — (—00, 0] be a proper, closed and convex function, and let 1* be
its convex conjugate. For any two sequences x1,...,x7 € R and ¢1,...,97 € R, we have

T T
thl‘t < —y* <— Z%)
t=1 t=1

if and only if

T
th(xt —u) <(u), YueR.
t=1

The next lemma is a Wasserstein normal approximation bound for iid Rademacher sums, simplified from
[Ros1l, Theorem 3.2]. The constant is not optimized.

Lemma G.6 (Nonasymptotic Wasserstein CLT for iid Rademacher sums). Let Xi,..., X, be iid Rademacher
random variables. If S, = > | X; and Z has the standard normal distribution, then for any 1-Lipschitz function
f:R— R we have

L) - Bl vz < 142

The final lemma is a standard estimate of the Mills ratio, due to [Gor41].

1-®(x)
é(x)

Lemma G.7 (Mills ratio bound). Consider the Mills ratio defined as m(x) := . For all z >0,

1

H Closed Forms of the Output

To provide additional intuition and ease the implementation of our algorithm, this section derives the closed
forms of Algorithm 1’s output (as well as the f, ,; function), focusing on the two special cases of h from
Section 4. The goal is to convert the computation of z; to querying common Gaussian-integral-type special
functions. Auxiliary lemmas for the derivation are provided in Appendix H.3.

H.1 Absolute Value Function
Consider the setting of Section 4.1.

Proposition 17 (Algorithm: absolute value). If h(z) = |z|, then in Algorithm 1,
p+EglptoZ|] @p0(2)

1 , <0,
Juon(x) = i Pu.o(2)
" L P EgllptoZl|1-@,,(2)
1 5 , x>0.
o (25#,0(93)
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Furthermore, the output Eq.(5) is equivalent to

1
=1 —/ Y dr, (21)
0o VT ngl —TC

which can be further expressed as one of the following three cases:

2y =1-20 (St”) .
Pt—1
o If p? | = c; > 0 which is only possible at t =T by the requirement of Algorithm 1, then
21 = —sign(se_1) [1 " mlse—a| \/?st_l (2‘1) <St—1) 3 1>  Vans <St—1>:| .
2 pi1 2 p1 Pr—1 Pi—1

1w edetar)
— 27 Jo 1+22

o Ifp? | >c;, =0, then

o If p? | > c; >0, then with Owen’s T function T(z,y) z,

2, =1—20 Sl

2
Pi—1 — Ct

) () ()

2 ’ 2
Vet Pt—1 Pt—1\ Pr_1 — Ct VGt Pt—1 Pi-1 — Ct

For implementation, both the normal CDF and the Owen’s T function can be queried from standard software
packages, such as SciPy.

Several remarks are in order.

e To make sense of these somewhat complicated expressions, first notice that all the expressions are consistent
with the standard dimensional analysis, where p, o and /¢ sharing the same “unit”.

e Next, the case of p? | > ¢; = 0 is the most interpretable one. It can be recovered from the general case
of p?_; > ¢; > 0: as ¢; — 0, the second line of Eq.(22) vanishes, therefore z; — 1 — 2®(s;_1/p;—1). This
equals the probability of a standard Brownian motion starting at s;_1 ending up being negative after p?_;
time. Also see Section 2 for discussions of this continuous time approximation.

e As shown below, the “last round special case” p? ; = ¢; > 0 and the general case p? ; > ¢; > 0 are proved
using different strategies: the former is based on the closed form of f, ,n while the latter is based on the
integral Eq.(21). Therefore a simple sanity check is to verify that the latter recovers the former in the limit
of ¢; = p7_y, which follows from T'(z,00) = 3[1 — ®(|z|)] [Owe80, Eq.(2.4) in Table II].

Proof of Proposition 17. The proof is divided into three parts: the first part analyzes the function f, , 5, the
second part derives the general integral representation Eq.(21) of x;, and the third part relates x; to common
special functions.

Part 1 Starting from the representation Eq.(9) of the solution of Stein equation, for all z < 0,

@) = o | (2 Ballu+ 02)oole)
— o ([ et e s Gt Bl o) [ du0te)a:)
o (@t G Belt ozl [ o) 0:)
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- o (7o 8) = (it Eallt o)), ()

p+Ezllp+oZ|] @, 0(x)

=1 = Fnola)

The other case of x > 0 is similar,

) = - m;/m@—ﬁznuwzuww )
’ % (= [T @) ds o Bellut o2l [ 6a(2) )
U% (o /% s+ (o= Eellu+o21) [ 602005 )
~r i (T ) + (0= Bl + 021 (1= 8, )
I EZHM-l—UZl]l— ®, 5 (z)
o? buo(z)

Part 2 Next we prove Eq.(21). By Lemma G.1, x; can be represented as the following integral with pu + s;_1,
04 pi—1 >0and c<+ ¢ >0,

IR
xt:—§/0 FIEZ [sign(g—i— 02—TCZ>] dr.

For the integrand, it is valid to only consider 7 < 1 and obtain

Ez [sign(u—i—\/aQ—TcZ)} :1—21P’(u+\/02—7'cZ§0) =29 (QM) -1
o

—TC

Therefore combining them gives Eq.(21) stated in the proposition.

Part 3 The final step is to relate Eq.(21) to common special functions. The case of p? ; > ¢; = 0 simply follows
from Eq.(21). The general case of p7_; > ¢; > 0 follows from Lemma H.1, which is separated for reusability.
Below we only consider the last round special case, p7_; = ¢; > 0.

Let pt < s4—1 and o < p;—1 > 0. The definition of x; in Eq.(5) and the above results on f, 5 give

p+Ezllp+oZ|] @,0(1)

1- ’ H g Oa
21 = Fuan(i) = o one)

=Bl oZ] 1 =Pl
o? Puo(p) 7

where ®,, , (1) = % and ¢, (1) = \/2170. These two cases on p can be combined into

. V2T
oy = —sign(p) |1+ 5= (lu| = Ez[lu + o Z]))
where
K o0
5 [
Ez(lu+oZ|] = / (—p—ox)o(z)dx +/ ., (p+ox)p(z)de =p {2@ (g) - 1} + 200 (;) . O
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H.2 Huber Function
Consider the setting of Section 4.2.

Proposition 18 (Algorithm: Huber). If h(z) = 2% - 1[|z| < k=Y + (2| — o) - L[|z > k~1] for some k € Ry,
then in Algorithm 1,

pt Ez[h(u+02)] + (2k)~! @, ()

1 , r< —k71,
o? (bu,a(x)
2026, 4 (2) (kp? + ko? = 2Bz [h(p + 0 2)]) Py (2) — ko? (x + 1) pp,0 ()
Fuon(x) = " k' <e <k,

—(kp? + ko + 20+ ko (k1) + 07 (14 kum,ﬁ(—kl)} :

_ _ -11_
L BBl 02) OB = () R

g Dp,o (T)
Furthermore, the output Eq.(5) is equivalent to
S¢—1 + k'_l

1/t =kt
l‘tzl— */ [(1—k$t_1)@ M +(1+kst_1)<1>
0

2Jo VT \/ PP — TC Py —TC
=kt kTt
—k\[p2 —7Ter | @ it S ) e Sl 1 dr. (23)

2 2
Pr—1 —TC Pi—1 —TC

Slightly different from Proposition 17, in Proposition 18 we leave the output x; as a general integral Eq.(23)
for brevity. Nonetheless, the same idea still holds: Eq.(23) can be further converted to a closed form using
Gaussian-integral-type special functions. Concretely,

o If p? | > c; =0, then

ml@(””k1>@<&*+kl)
Pt—1 Pt—1
1kt 1+ kTt -kt 1+ kT
el (1 (50) o (55)) +en (o (52) e (55)))
Pt—1 Pt—1 Pt—1 Pt—1
e If p2 | = ¢; > 0 which is only possible at t = T by the requirement of Algorithm 1, then x; =

fsi_1.pe_1,n(5¢—1). The closed form of f, . is derived in Proposition 18.

o If p? | > ¢; > 0, then it suffices to apply the Gaussian integral formulas from Lemma H.1 and H.2. The
final result is the closed form of x; based on Owen’s T function.

Remark H.1 (Effective learning rate). Intuition can be obtained by reasoning about the effective learning rate
of Algorithm 1. Suppose p? > cyy1 = 0 for some t € [0: T — 1], giving

xt+1:1_q)(5tkl) _@(W)
Pt Pt
celu(o (5) o (05)) o (0 (45) o (5))]
Pt Pt Pt Pt

Denote the RHS as Z¢y1, the output of the ci-independent analogue of Algorithm 1. Taking the derivative with
respect to s; gives

a.i't_;,_l _ —z(b (St—k_l) +k |:(I) <5t _k‘_1> 3 <5t+k'_1>:|
08y Pt Pt Pt Pt
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(o5 -0 (57) - 5 (5 o)
Pt Pt Pt Pt Pt Pt Pt

Furthermore, 441 = 0 when s; = 0.
Now suppose s¢—1 = 0 therefore sy = g and T = 0. Based on the above, we linearize Ty1 with respect to gy
(also si, as sy = g¢) and obtain

Tpyp1 — Ty = Tpy1
0% 41

. 0
5120 D5y |s,—0 gt +o(gt)

o) o)

1
=—k-erf - .
. (ﬂm%) 9t 0<gt>

The absolute value of g;’s coefficient can be regarded as the effective learning rate.

= T4

Proof of Proposition 18. The proof generalizes that of Proposition 17. Again it is divided into two parts analyzing
fu,on and x; separately.

Part 1 Consider f, 5. Starting from the representation Eq.(9) of the solution of Stein equation, for all
x < —k71,

@) = g | [ ot g (2)s = G+t Bolhliet 0 2)] ) ,0(0)|

1 1
= m {02%,0(%) — <2k +pu+Ez[h(p+ aZ)]) (bu,o(x):|
Bl o Z)] 4 (2K B (2)
o2 ¢u,0(1‘).
Similarly, for all z > k1,
nan@) = =z | [T moa(e) s = (5 = o Bzlblut 02)]) (1= Bn(e)
1w,0,h = J2¢u,a(x) : H)Dpu,o 2% 1% AUV 1,0
1
- —m [02¢u,0($) — (2179 —pu+Ez[h(p+ UZ)]) (1- @W,(x))}
_ 1 HEg[h(p+o2)] - (k)11 - @y ,(2)
o? Guo(r)
As for the regime in between: for all x € [k~ k71],
fu,a,h(x)
1 -k 1 Tk
= [ [ (o) duetahdet [ 3600(e) s~ Balh(u+ 0 2) 200

— i [P = (08 g ) B [ P00 Bl 0 2], 0(0)].

where
xr

/_3;1 Z2¢M,J(Z’) dz = [(MQ + 0-2)‘1)“’0(2) _ (72(2’ T /L)(bu,g(z)]

z=—k—1

Plugging it back,

fuon(@) = {(kuz) +ko? = 2Bz[h(p + 0 Z)))8puq () — ko (@ + 1)y o ()

1
202¢,,0(x)

— (ki + ko? + 2+ k1)@, o (k1) + 02(1 + ku)«éup(—k—l)} :
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Part 2 Consider z;. By the same substitution p < s;_1, 0 + ps—1 > 0 and ¢ + ¢; > 0 as in Proposition 17,

x; can be reformulated as )
1 1
Ty = —7/ —E, {h’ (u + Vo2 — TCZ)} dr,
2 Jo VT

where

z [h’ (,u+ Vo? —TCZ):| = —/_\/,:217:: (b(z)dz—&—/ool ¢(z)dz+k/faf;fc (,u—|— 02 —’TCZ) ¢(z)dz

2

of—Tc o —TcC

= 1+ (1—ku)d (H) + (14 k)@ (\/;021%)

o e le (AR ’flw)]
kv o2 Tc{gﬁ(m) ng( —— | O

H.3 Auxiliary Lemmas

The above derivation uses the following two Gaussian integral lemmas, derived by somewhat complicated but
mechanical calculations.

Lemma H.1. For all p € R, 0 € Ryq and ¢ € (0,0?),
1 u
1-— — ¢ ——— ) dr
/o VT (\/02—70>
—1-20(_F v U¢( ) 1- 20 ¢ _ A e e
Vo2 —¢ Ve o o\ o2—c Ve o'\ o2-c

Proof of Lemma H.1. Denote the LHS of the objective equality as f(u). Taking the derivative gives

2

1075 || e (o)

2 \% <72C76 1 /,L2(1+7'2) 2
T Vo Jo 1+725P <_ 202 dr (7« (1+T2)c)
2V2m W c 1 y - 3e2+22)
= e T (U, o c) ) (T(2,y) == 0 1422 dz)

where the last line uses the definition of Owen’s T function. It is known that [Owe80, Eq.(c00,000.1) in Table I

y . 1
/T(x, y)de = aT(x,y) + m@ (z\/ 1+y ) — ¢(z)P(yx) + iqb(x)

Therefore, since f(0) = 0,

f(u)Z—a\//i?/oﬂTG’\/Z) dr
<2 o)+ e () o () i

i) o) e (8552 (1)

Lemma H.2. Forallp € R, 0 € Ryg andce(O, ),

e =) v

:m.¢(¢;ﬁ)+@“a¢(g)[¢(g 0260)_;%\/\/2?(02_”2”(5’ Uzcc)
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Proof of Lemma H.2. Similar to the first step of Lemma H.1, with the change of variable 7 < m, the LHS
of the objective equality can be converted as

/lmd)( p )dT: 20 /ﬁ 1 exp<—'u2(1+7.2)>d7'
o VT Vo2 — e V2me Jo (1+72)2 202 '

For brevity, denote the obtained RHS as ¢{. The objective now is to further simplify this term, specifically

1.2 2
. . ~122(1+22)
relating it to Owen’s T function, T'(z,y) = % Oy ele zZ.

For notational convenience, define v = % > 0. Taking the following derivative yields

d T [1— 2u72 272
a7 (1 2\\ | _ _ (1 2
dr {l—i—TQGXP( o +T))} | 1+72 (1+72)2}6Xp( U +T))
[ 1+ 2072 2 )
=|- —u(1
T +(1+T2)2}exp( v(1+47%))
i -1 2 )
= _—2v+ T2 + (1+72)2} exp (—v(1+77)),

therefore

exp(—v(l+7?) 1d [ T

B 1 exp (—U(l + 7'2))
(1+72)2  2dr [1+72 :

exp (—v(1+7-2))} + vexp (—v(1+7-2)> + (2 —v T2

Integrating it with respect to 7 gives

Yexp (—v(1+72))

dr

S—

(1+72)2
_ 17 an |7 o [ 9 1 Y exp (fv(l +7-2))
_§1+T2exp(—v(1+7)) T:0+ve /0 exp(—vT)dT+ 5—1} /0 2 dr
_ 1y 2 v 1 1
=311 exp (—v(1+y?)) + vmve [(I)(\/Quy) 2} +2r (2 v) T(V20,y).

Specializing it to ¢,

2
— c ]
= U=

Y a2—¢’ 202

I
l\D
| —
l\')\»—l

Y 5 exp (—v(1+9°)) + Vrve ™ [(D(\/%y) B 1] 2 (1 B v) Ty y)]

+y° 9 D)
= exp< sta) oo (45 [ (375) -
R~

o)+ ) b () 4 - (B ).

l\D
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