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Summary Adaptivity is an increasingly important focus in modern data science: with minimum human
intervention, algorithms often need to self-adjust to the environments they are deployed in, while avoiding
catastrophic failure modes. My passion is to design such adaptive methods for rigorous sequential
decision making problems, leveraging ideas from optimization, statistics, signal processing
and game theory. The results are novel theoretical frameworks that blur the boundary between different
technical fields, as well as principled solutions to a number of practical challenges.

Advances in artificial intelligence are often motivated by the strengths of biological intelligence, and the
pursuit of adaptivity is one of the most prominent examples. Think about how humans make everyday
decisions: with the proper experience (i.e., inductive bias), we are able to independently thrive in complicated
changing environments, while simultaneously refining our experience through this process. In contrast, even
the state-of-the-art decision making algorithms fall short in comparison, as extensive human inputs are often
required throughout their life cycle, and a slight adversarial perturbation can sometimes make them crumble.
This raises an important question for the research community:

How to make algorithms more adaptive to the environments they are deployed in?

My research centers around this high level question, but instantiates it in rigorous data science problems
at the intersection of optimization, statistics, signal processing and game theory. Specifically, I design
adaptive sequential decision making algorithms in the following concrete manners.

e Algorithmically, they have fewer hyperparameters than non-adaptive algorithms, and their proper function-
ing is based on less stringent assumptions (e.g., the noise is not assumed to be iid).

e Quantitatively, they are equipped with optimal performance guarantees that scale with the complexity
of the encountered environment (which is unknown before deploying the algorithm), rather than the
complexity of a pre-defined environment class.

‘ Topic ‘ Key insight ‘

Parameter-free optimization
[ZCP22¢, ZCP22b, ZYCP24]
Time series forecasting
[ZCP23]
Uncertainty quantification
[ZBY24, Z1Y24]

PDESs reveal key optimization structures in continuous time.

Wavelet + parameter-free optimization improves dynamic regret minimizers.

“Adversarial Bayes” unifies stochastic & adversarial conformal prediction.

Table 1: Summary of my representative results and their insights.

Achieving such adaptivity requires uncovering the latent connections between disparate technical fields,
as summarized in Table 1. But besides the endless joy from this theoretical endeavor, I am still an engineer
at heart, and an important goal of my research is to address practical data science challenges
using the derived insights. This includes adaptive regularizers that mitigate the loss of plasticity in
continual learning [MZY?24], trustworthy confidence set predictors without statistical assumptions [ZLY?24],
unsupervised adaptation of confidence set predictors [KZYT24], and beyond.

Zooming out to an even higher level, my research philosophy / taste is to do “elegant and practical
theory”. Selecting the right research topic is particularly important, as a balance needs to be reached
between its intellectual depth and practical relevance. I specifically favor topics with simple settings but rich
structures, which means that elegant solutions might be built from nontrivial twists on the conventional
wisdom, with as few technical nuances as possible (as shown later, my prior works bear this out). From a
practical perspective, such topics also quite frequently coincide with the right level of abstraction: although
it seems hopeless to obtain a mechanistic understanding of many practical data science regimes (especially
related to modern vision-language models), I still believe that studying the right theoretical abstraction can
provide valuable engineering insights, which leads (rather than follows) the advances in practice.
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Past Research

Regarding the central theme of adaptivity, my representative results are summarized into the three topics
below (also see Table 1).

Parameter-Free Optimization / Online Learning My main technical background is Online Convex
Optimization (OCO) [Zin03], an iconic problem setting in online learning that bridges convex optimization
and game theory. Here, the optimization algorithm faces a sequence of convex loss functions selected by an
unknown adversary, and the goal is to ensure low excess total loss (i.e., low regret) with respect to the optimal
fixed iterate (i.e., the optimal comparator). Viewing the adversary as a generic noise-generating mechanism,
such a setting has been widely adopted to study stochastic optimization and its numerous extensions, including
but not limited to training machine learning models [DHS11], quantifying their uncertainty [GC21], and
controlling dynamical systems [ABH"19].

Within OCO, strong forms of adaptivity have been studied under the notion of parameter-freeness
[MS12, MO14], and it is known that certain variants of the celebrated Follow the Regularized Leader (FTRL)
algorithm [OP16, CO18, MK20] can almost match the performance of the optimally-tuned gradient descent
without any tuning. The limitation is that the design of such algorithms is more of an art than a science,
and the key problem structures are often concealed by the complicated algebraic analysis (which is a quite
common obstacle in optimization theory), making the search of optimal algorithms difficult.

A main thread of my past research is developing a novel continuous time (CT) framework to
streamline the analysis and design better algorithms. The intuition follows naturally from comparing
OCO with adjacent fields such as signal processing and control systems, where the usual strategy is to first
design an algorithm in CT and then discretize it, with the CT problem being much simpler. Developing an
analogous argument for OCO requires addressing a number of technical challenges. More specifically,

1. By bridging the core algorithmic reductions in parameter-free OCO [MO14, CO18] with recent CT
characterizations of repeated games [DK20, HLPR23|, my first work in this thread [ZCP22¢, ICML’22]
demonstrates how to convert solutions of a particular PDE (called the Backward Heat Equation; BHE)
into FTRL regularizers. Then, with a proper discretization argument developed in [ZYCP24, ALT 24|,
this provides a tractable “continuous” way to design and analyze a larger class of parameter-free OCO
algorithms, whose “discrete” algebraic analysis was prohibitively difficult before.

In particular, this CT framework generates a nonstandard algorithm based on the imaginary error function,
achieving stronger notions of optimality than prior works.

2. Next, another work of mine [ZCP22b, NeurIPS’22] applies the CT perspective on a variant of the OCO
problem called OCO with switching cost. This is a fundamental building block of an adversarial theory
of control systems [ABHT19], with a complicated, suboptimally adaptive algorithm already proposed in
[ZCP22a, AISTATS’22]. Here, the CT framework reveals that adding switching costs corresponds to giving
the BHE a larger negative diffusivity constant, which ultimately results in a simpler but optimal algorithm.

Overall, this line of works is particularly close to my heart, as it connects a diverse range of technical
pieces and turns them into a coherent pipeline to design better adaptive algorithms. Does it actually make
a difference in practice? Focusing on the application in continual reinforcement learning, my recent work
[MZY 24, NeurIPS’24] provides an example which confirms that. The idea is that continual learning algorithms
need suitable regularizations to maintain plasticity (i.e., the ability to respond to changing inputs), and
parameter-free OCO, at its core, provides implicit reqularization schemes that achieve this well.

Time Series Forecasting My second major research topic is the theoretical foundation of time series
forecasting, which can be rephrased as a dynamic extension of the above OCO problem. The difference is
that instead of requiring the comparator to be a fixed point on the domain, the dynamic setting allows it
to change over time (think of it as the ground truth time series), and effectively, the regret is defined with
respect to such comparator sequences. This brings a substantial shift in the intuition: the problem is closer to
signal processing than optimization, as the output of reasonable algorithms typically does not converge.

Adaptivity is right at the center of this problem, as one would expect the forecasting performance to
depend on the regularity of the time series, usually measured by its variability. However, existing attempts
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from the pure optimization perspective are somewhat odd [Zin03, HW15, ZLZ18, JC22]: although the algebra
works well, there is in general a lack of intuitive transparency in the exploitation of comparator structures,
making further improvements difficult. In particular, an important solution concept called “second-order
comparator adaptivity” had not been achieved before.

My contribution is an algorithmic framework [ZCP23, NeurIPS’23] bridging the insights
from signal processing and parameter-free OCO. It is known separately that

1. (Signal processing) If the ground truth time series has low variability, then it can be represented as a
sparse linear combination of the Haar wavelet basis.

2. (Parameter-free OCO) There exists a class of OCO algorithms whose (static) regret bounds scale with the
sparsity of the fixed comparator.

Combining them leads to a natural strategy which is quite different from all previous attempts: applying
sparsity-adaptive OCO algorithms on the transform domain of the Haar wavelet basis (i.e., the space of
weights). More surprising is its quantitative power: the desirable second-order comparator adaptive regret
bound can be obtained from the state-of-the-art result on parameter-free OCO (my first research direction)
and the wavelet approzimation theory. This constitutes the backbone of my PhD dissertation [Zha23],
which won the departmental outstanding dissertation award.

Uncertainty Quantification Since starting my postdoc, I also became interested in the topic of adversarial
uncertainty quantification. This is motivated by a common practice of modern machine learning: instead of
predicting a single label, the model often needs to predict a collection of labels with a specified confidence
level, with few or no assumption on the data. The key challenge is to align the model’s own perception of
uncertainty with its actual performance in the real world.

Conformal prediction (CP) [VGS05] has recently emerged as a premier framework to address this challenge,
as it blends the empirical strength of modern ML with the theoretical soundness of traditional statistical
methods. The conventional idea (called split CP) is to assume iid or exchangeability on the environment,
such that with a standard quantile estimation subroutine, the uncertainty of the ML model itself can be
reliably calibrated by an offline dataset. What if such statistical assumptions do not hold? A recent trend is
using ideas from OCO to tackle certain surrogate objectives (e.g., controlling the coverage frequency error
[GC21]), but overall, there are still many open problems regarding the validity of such objectives and the
corresponding algorithms.

My latest representative results are CP algorithms built on deeper connections between
adversarial online learning and (Bayesian) statistics.

1. First, my prior work [ZBY24, ICML’24] develops an adaptive framework for the fully adversarial setting
of CP [GC21], achieving accelerated upper bounds on the coverage frequency error. The key observation
is that the FTRL-type OCO algorithms are more compatible with the structure of CP (especially with
the coverage frequency error as the performance metric), even though from the perspective of regret they
often perform similarly as gradient descent.

2. Recently I started to think about an even more intriguing problem: how to unify the strengths of the
conventional split CP and more recent OCO-based approaches? This is an important adaptivity issue
previously overlooked by the community, as after all, the users would like to avoid artificial statistical
assumptions on the environment, and a good algorithm needs to automatically achieve stronger performance
guarantees if the environment is actually easy (iid or exchangeable).

My recent work [ZLY24, arXiv’24] provides a compelling solution, where the key idea is to replace the
conventional frequentist quantile estimator in split CP by its Bayesian counterpart. The insight is that
without sacrificing performance under the iid assumption, the Bayesian procedure enforces a regularization
that “robustifies” split CP in adversarial environments, and quantitatively, the optimal regret bound can
be obtained by interpreting the algorithm as a strong form of FTRL (i.e., without loss linearization). This
is also intriguingly related to some recent progresses on loss-agnostic decision making [KLST23, LSS24].

Future Plan

Going back to a higher level discussion, my tentative future research plan is sketched as follows.
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Research Direction Although there are a number of intriguing open problems I would like to work on in
the near future, here I focus on longer term directions (3-5 years). All of them are closely related to my main
research theme of adaptivity.

1. Adversarial uncertainty quantification. This is a topic I have been thinking about for the past year,
and it continues to attract me for multiple reasons. Practically it is associated with high impact, since
the field of uncertainty quantification is moving towards general use cases beyond traditional statistical
assumptions (such as LLM-powered robotics [RDB'23]), and solving that requires transformative insights
rather than just “scaling up”. Intellectually the problem is also really deep, as the very basic definition of
uncertainty and confidence is nontrivial in the adversarial setting, and furthermore, it remains somewhat
unclear what makes the uncertainty evaluation “trustworthy”. I believe the answer lies in an improved
understanding of the interplay between adversarial online learning and statistics, and game-theoretic
probability [SV19] is likely to help.

2. Decision making with systematic considerations. Most existing works on sequential decision
making are egocentric: only targeting the default performance metric (e.g., regret), it is so far quite
clear what is the fundamental limit one could achieve, as well as how to achieve it. Much less studied
is a systematic, “societal” perspective: rather than functioning alone, the algorithm needs to interact
with other parties such as data providers, competitors and downstream users. Each party has its own
considerations (e.g., efficiency, privacy, fairness), and it is important for the decision making algorithm to
take those into account, ideally in an adaptive manner, to ensure the whole system operates properly.
Motivated by their numerous instantiations at the intersection of ML and EconCS, I am increasingly
interested in such decision making problems whose objectives are defined by external parties that the
algorithm interacts with. A concrete example from my prior works is [ZLY24], which shows that for
adversarial conformal prediction, a Bayesian technique can ensure that the confidence sets received by
different downstream users do not contradict each other.

3. Adaptivity meets embodied AI. Recall that at the beginning, I used the adaptivity of natural

intelligence to motivate adaptive data science algorithms. Although the two concepts are usually studied
separately in the literature, their gap is getting significantly narrower due to recent advances in embodied
intelligence. The key reasoning is the following: the theoretical concept of adaptivity says that performance
guarantees should depend on the complexity of the problem instance, but crucially, such a complexity
notion also depends on the prior knowledge of the algorithm — better priors make the problem easier.
Since embodied Al is actually enabled by really good priors from large scale pre-training, an exciting
future direction is using more adaptive algorithms to improve the efficiency and reliability of embodied Al
systems. A sample research question could be, “can quadruped robots reliably improve themselves in the
real world, using more adaptive fine-tuning algorithms?”
Personally I see embodied AT as one of the most promising directions for the next decade, and my postdoc
experience in a robotics group has prepared me to tackle challenges in this space (e.g., [MZY24]). Although
my own group will likely focus on foundations, I plan to actively collaborate with colleagues in order to
actually deploy our algorithms to the real world.

Style and Value Finally, as I am about to lead my own research group in the near future, I would like to
share some thoughts on the style and values of my group.

1. I see the well-being of group members as the top priority. A warm and supportive group can boost the
energy of individuals, which will eventually help the research quality in the long run.

2. T am committed to creating a collaborative and intellectually stimulating environment, such that group
members can freely share thoughts and learn from each other.

3. I value depth over breadth. As a young group, we will focus on selected core topics (see above for examples),
build our technical strengths, and aim to go deep.

4. Scientific independence is crucial. Rather than just chasing the trend, I would expect my group to mainly
work on problems we are genuinely excited about (while still being practically relevant), and aim for
results with our own identifying style.
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