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ABSTRACT

Adaptive online learning, in a very broad sense, is the study of sequential decision

making beyond the worst case. Compared to their classical minimax counterparts,

adaptive algorithms typically require less manual tuning, while provably performing

better in benign environments, or with prior knowledge. This dissertation presents

new techniques for designing these algorithms. The central theme is the emphasis on

the temporal nature of the problem, which has not received enough attention in the

literature.
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The first part of the dissertation focuses on temporal continuity. While modern

online learning almost exclusively studies a discrete time repeated game, it is shown

that designing algorithms can be simplified, and in certain cases optimized, by scal-

ing the game towards a continuous time limit and solving the obtained differential

equation. Concretely, we develop comparator adaptive algorithms for Online Convex

Optimization, achieving optimal static regret bounds in the vanilla setting and its

variant with switching costs. The benefits are extended to another classical online

learning problem called Learning with Expert Advice.

The second part of the dissertation focuses on temporal representation. Different

from the first part, here we consider the general objective of dynamic regret min-

imization, which forms the foundation of time series forecasting. It is shown that

by introducing temporal features, the task can be transformed to static regret mini-

mization on a user-specified representation space with growing dimension. Drawing

novel connections to wavelet features, we develop a simple algorithm improving the

state-of-the-art dynamic regret bound achieved by more sophisticated approaches. An

application is the online fine-tuning of a black-box time series forecaster.
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Chapter 1

Introduction

The study of Machine Learning (ML) originated from the wildest imagination of

human beings. It is hoped that someday, we might be able to create an intelligent

machine that can think, respond, and distill knowledge like us. While the exact

definition of intelligence is still not settled, machine learning as a serious research

field has thrived under a more concrete, although still challenging objective – creating

programs that improve themselves by observing the environment, rather than only

relying on hard-coded knowledge. There are numerous success stories fitting into this

narrative. For example, by recording the observations into large datasets (Deng et al.,

2009), one could train highly capable deep learning models for image classification

(Krizhevsky et al., 2017). Another example is reinforcement learning, where the

learning agent directly interacts with a stateful environment through trial-and-error;

this has powered remarkable advances in game playing (Silver et al., 2016), protein

structure prediction (Jumper et al., 2021) and automatic question answering (Brown

et al., 2020).

Despite the diversity of these learning problems, one could view them as variants

of an abstract, discrete time sequential decision making process. In each round,

the learning agent picks a decision without knowing the environment’s choice; and

then, the environment reveals a feedback, which also measures the quality of the

agent’s decision. It is clear that sequential learning problems, such as reinforcement

learning, are special cases of such a process with certain structured environment and
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feedback protocol. The classical batch learning problems are also recovered when the

standard independent-and-identically-distributed (IID) condition is imposed on the

environment – in fact, even though the entire dataset is available without explicit

sequential interactions, the common practice for training deep learning models is

splitting the dataset into mini-batches and processing them sequentially, due to the

typically gigantic size of modern datasets. Therefore, unlocking the full potential

of machine learning requires a deeper understanding of sequential decision making,

which adds to the importance of this classical research field.

A lot has been done on the sequential decision making problems motivated by

machine learning. Depending on the level of abstraction, plenty of interaction models

have been proposed, each with its own value. Specifically, a significant amount of

research effort has converged to a setting called Online Convex Optimization (OCO),

which is the focus of this dissertation. The basic setting (Zinkevich, 2003) is the

following, while variants of this setting will be introduced later when needed. It is so

popular that the research community sometimes equates it to online learning, which

ought to be a broader concept. For the ease of exposition, we will also adopt this

somewhat inappropriate terminology.

Definition 1 (OCO). Online Convex Optimization is a repeated game between a

learning agent and an adversarial environment denoted by Env. In each (the t-th)

round,

1. The agent makes a prediction xt ∈ X based on the observations before the t-th

round. X is a nonempty, closed and convex subset of Rd.

2. The environment reveals a convex loss function lt : X → R, which depends

deterministically on the agent’s prediction history x1, . . . , xt.

3. The agent suffers the loss lt(xt).

The game ends after T rounds, and then, the total loss of the agent is compared to that

of an alternative sequence of predictions u1, u2, . . . ,∈ X , called a comparator sequence.
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Without knowing the environment Env and the comparator sequence {ut}t∈Z, the goal

of the agent is to achieve low regret, defined as1

RegretT (Env, u1:T ) :=
T∑
t=1

lt(xt)−
T∑
t=1

lt(ut). (1.1)

If this expression is at most a sublinear function of T , then asymptotically (as T →∞),

the average loss of the agent is at most that of the comparator sequence {ut}t∈Z.
Since Env and {ut}t∈Z are hidden before predictions are made, the agent’s strategy

cannot depend on them. This motivates a robust objective – achieving sublinear regret

against a large class of environments and comparator sequences. The choice of such

classes will be made clear as we proceed.

It is immediately noticeable that there are no statistical assumptions on the

environment, which is in stark contrast to a vast body of research based on, for

example, Gaussian modeling. Yet, the comparator sequence is selected after all the

loss functions are revealed, which may seem unfair: how is it possible to beat a

benchmark that has hindsight about the future? Indeed, this is a valid concern, and

as a small hint, adaptive online learning will be crucial for characterizing what can be

done. For now, we introduce the conventional perspective relying on restricting the

comparator class – an important and better studied special case is the setting with

fixed comparators.

Definition 2 (Static and dynamic regret). If the comparator sequence {ut}t∈Z satisfies

ut = u for some u ∈ X , then we define

RegretT (Env, u) :=
T∑
t=1

lt(xt)−
T∑
t=1

lt(u). (1.2)

Following the convention of the field, (1.1) is called the dynamic regret, while (1.2) is

called the static regret.

Intuitively, the problem is simpler, or more fair for the agent, when the static

regret is used as the performance metric: even though the comparator can still be

1u1:T denotes the tuple [u1, . . . , uT ].
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chosen after observing all the loss functions, it has to be time-invariant, while the

agent’s prediction can change over time. Both the simpler static regret and the more

general dynamic regret will be considered in this dissertation.

Why is OCO an interesting setting? A possible explanation is that, it is general

enough to cover a wide range of downstream applications, while still being mathemat-

ically tractable. Here, we list three examples to contextualize its abstract setup. They

include not only the narrowly defined “ML training” tasks, but also classical research

topics from disparate fields.

• Training ML models. Taking linear regression as an example, suppose we are

given a collection of IID covariate-label pairs, (zt, yt) ∈ Rd × R, sampled from

an unknown distribution. A linear model parameterized by x is the function2

f(z;x) = ⟨z, x⟩, which maps a covariate z to a predicted label in R, and induces

the square loss (⟨z, x⟩ − y)2 with respect to the true label y. Training the model

amounts to finding a coefficient x∗ that minimizes the risk E(z,y)[(⟨z, x⟩ − y)2],

and by changing the model and the loss function, the same task can be defined

beyond linear regression.

Converting the above into the OCO framework, we obtain the following sequential

training procedure. The learning agent’s prediction xt is the estimated coefficient

of the linear model after observing t−1 samples, and the loss function lt in OCO

measures the quality of xt in fitting the t-th sample, i.e., lt(x) = (⟨zt, x⟩ − yt)2.

Applying a suitable OCO algorithm, the static regret (1.2) translates to

T∑
t=1

(⟨zt, xt⟩ − yt)2 =
T∑
t=1

(⟨zt, u⟩ − yt)2 +RegretT (Env, u),

where the regret term on the RHS can be sublinear in T regardless of the

environment Env and the comparator u. Picking an optimal coefficient x∗ as

2⟨·, ·⟩ denotes the inner product.
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the comparator u, it means that (the average of) the LHS, which quantifies the

performance of training, is asymptotically no greater than the empirical risk of

the optimal coefficient. In other words, the training is successful.3

• Weather forecasting. The previous example demonstrates the use of static

regret bounds, which is motivated by the inductive bias that there exists a

time-invariant prediction x∗ with low cumulative loss. This is indeed true in ML

training, as we assume samples are IID, and implicitly, the relation between the

covariate and the label can be well summarized by a linear model. Because of

this, the static regret (1.2) is the most common performance metric for OCO,

but there are also situations where this inductive bias fails, and we are required

to consider the dynamic regret (1.1).

A good example is time series forecasting. Suppose we want to forecast the daily

temperature. In the OCO framework, the agent’s prediction xt ∈ R is our guess

of the next day’s temperature after t− 1 days have passed. Then, the nature

reveals a true temperature x∗t ∈ R, which induces a loss f(xt;x
∗
t ) on the agent

based on a fixed function f ; for instance, f(xt;x
∗
t ) can be the absolute error

|xt − x∗t | or the square error (xt − x∗t )2. A natural candidate for the comparator

sequence {ut}t∈Z is the true temperature sequence {x∗t}t∈Z, and in that case, the

cumulative forecasting loss is simply the dynamic regret, i.e.,

T∑
t=1

f(xt;x
∗
t ) = RegretT (Env, x

∗
1:T ).

That is, upper-bounding this dynamic regret leads to guaranteed forecasting

performance.

3Technically, we need the online-to-batch conversion (or simply, concentration inequalities) to
relate the final step to the risk, which is standard (Orabona, 2019) and beyond the scope of this
dissertation.
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• Sequential investment. The third example aims to show that in the OCO

framework, although the learning agent’s decision is often called a “prediction”,

it does not necessarily mean that there is a ground truth that the agent needs

to estimate.

Consider the following sequential investment task: the agent’s prediction xt ∈ R

is the amount of a particular stock that it holds at the start of the t-th day. Then,

the environment reveals the price change ct ∈ R of the stock, and the agent’s

total wealth increases by ctxt. If the agent doubles its prediction xt, then the

return also doubles, which could be either positive or negative. Therefore, there

does not exist an optimal investment amount in hindsight, which is in contrast

to the weather forecasting example above. A sublinear dynamic regret bound

(1.1) means that asymptotically, the per-round return of the agent approaches

that of the comparator investment strategy, i.e., holding the amount ut on the

t-th day.

Clearly, no algorithm can guarantee sublinear dynamic regret against all com-

parator sequences, since otherwise there exists an investment strategy that

always wins regardless of the environment. Nonetheless, if we only care about

matching the performance of a smaller class of benchmark investment strategies,

then it is possible to guarantee sublinear dynamic regret against such a class of

restricted comparators.

Summarizing the above, we hope to convince the reader that OCO is a useful

model worthy of detailed investigation. Moreover, it is also hinted that a considerable

amount of subtleties exist in its seemingly innocent setup. For more motivation of

the online learning problem, the readers are referred to excellent textbooks including

(Cesa-Bianchi and Lugosi, 2006; Rakhlin and Sridharan, 2014b; Hazan, 2016; Orabona,

2019).
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Next, we will concretely introduce different ways to solve OCO. The standard

minimax optimal algorithms are surveyed in Section 1.1, which naturally motivates

their adaptive counterparts (Section 1.2), as well as the important Bayesian interpre-

tation of adaptive algorithms (Section 1.3). Common types of adaptive online learning

are introduced in Section 1.4. Section 1.5 presents an overview of this dissertation,

including the main contributions. Notations are introduced in Section 1.6.

1.1 Minimax online learning

OCO is an optimization problem, so it is natural that the geometry of the loss functions

determines the achievable convergence rates. Throughout this dissertation, we will

assume Lipschitzness on the loss functions, with respect to the Euclidean norm unless

specified otherwise.

Assumption 1. For all t, the loss function lt selected by the environment is G-

Lipschitz with respect to the Euclidean norm. G is known by the agent before the OCO

game starts.

Assumption 1 poses a limitation on the class of the adversarial environment we

consider. This is standard in the literature, and also the only essential restriction we

impose on top of the basic OCO setup. Compared to other structural assumptions on

the loss functions (e.g., strong convexity or smoothness), the problem with Lipschitzness

alone is in general the hardest (in terms of the achievable bound rather than the

difficulty of the analysis). Without guaranteed curvatures, a typical procedure of the

agent is to linearize the loss functions, turning OCO to a special case called Online

Linear Optimization (OLO).

Definition 3 (OLO). Online Linear Optimization is the following special case of

OCO: after picking the convex loss function lt, instead of revealing it to the agent, the

environment reveals a subgradient gt ∈ ∂lt(xt). The agent treats the surrogate linear

loss ⟨gt, ·⟩ as the loss function it observes.
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Due to convexity, we have for all u ∈ X ,

lt(xt)− lt(u) ≤ ⟨gt, xt − u⟩ .

Therefore, it suffices to consider OLO instead of OCO without loss of generality –

regret upper bounds of OLO are also regret upper bounds of OCO. This reduction is

typically optimal when no additional structure beyond convexity is assumed.

The most standard algorithm for OLO is Online Gradient Descent (OGD), which

was proposed in (Zinkevich, 2003) alongside the first OCO/OLO formulation. The

algorithm has a very simple procedure: after observing the subgradient gt, the

next prediction is generated through a (Euclidean-projected) gradient step xt+1 =

ΠX (xt − ηtgt). Suppose the learning rate is fixed (ηt = η), then regardless of the

environment Env and the time-invariant comparator u ∈ X , the static regret of OGD

is upper bounded by (Orabona, 2019, Theorem 2.13)

RegretT (Env, u) ≤
∥u− x1∥22

2η
+
η

2

T∑
t=1

∥gt∥22 .

Recall that due to Assumption 1, ∥gt∥2 ≤ G. As for the first term on the RHS, let

us consider only a subset U of comparators satisfying ∥u− x1∥2 ≤ D.4 Then, with a

known T , it is clear that the above regret bound is minimized when η ∝ DG−1T−1/2,

leading to supEnv,uRegretT (Env, u) = O(DG
√
T ), which is a sublinear function of T .

A time-varying learning rate can further relax the knowledge of the time horizon T ,

while achieving the same bound.5

The above tuning of the learning rate has a minimax flavor: implicitly, it is assumed

4In the language of online learning, the problem is improper, in the sense that the agent can
operate on a larger domain than the comparator. It becomes proper if for all x ∈ X , ∥x− x1∥2 ≤ D.

5In principle, this “anytime” result is actually a type of adaptive online learning with respect to
the time horizon T . However, it is so simple and practically necessary that the community nowadays
often takes this adaptivity for granted in the study of minimax algorithms. See Section 1.4 for a
detailed discussion.
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that the environment and the comparator are the hardest (worst) case possible, i.e.,

∥gt∥2 = G and ∥u− x1∥2 = D; and then, a suitable tuning of η ensures that even in

this case, the regret is still sublinear in T . In other words, the design of the algorithm

aims to minimize the worst case regret

sup
Env,u

RegretT (Env, u), (1.3)

therefore we call such algorithms “minimax algorithms”.

In a similar spirit, the O(DG
√
T ) static regret bound is known to be minimax

optimal (Orabona, 2019, Section 5.1): for any OCO algorithm and any positive

integer T , there exist an environment Env and a static comparator u satisfying all

the aforementioned assumptions (including ∥gt∥2 ≤ G and ∥u− x1∥2 ≤ D), such that

RegretT (Env, u) = Ω(DG
√
T ). Such minimax optimality is a key reason behind the

popularity of (stochastic) gradient descent.

As one would expect, OGD is not the only minimax online learning algorithm

(Hazan, 2016; Orabona, 2019). It can be generalized to Online Mirror Descent (OMD),

which uses the geometry of the domain to design better incremental steps. In parallel,

there are frameworks such as Follow the Regularized Leader (FTRL) and the potential

framework, which use dual space updates rather than incremental steps. These general

frameworks are not necessarily minimax by default, but their common instances are

indeed minimax, sharing a very similar reasoning as OGD above. For the ease of

exposition, we will primarily use OGD (or alternatively, “gradient descent”) as the

“minimax baseline” throughout this dissertation.

To summarize, focusing on the static regret, we loosely define algorithms that

minimize the worst case regret (1.3) as minimax algorithms. More rigorously, one could

define minimax optimal regret bounds in a standard game-theoretic manner. Pondering

these concepts, there are a few obvious limitations. For example, the well-posedness of
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the worst case regret (1.3) originated from a restriction on the comparator class. There

are settings of the comparator class U such that the worst case regret of any algorithm

is infinite or trivial. Furthermore, the problem instances we face in practice are usually

not the worst case, therefore a minimax algorithm could be overly conservative, and

the minimax optimal regret bound could be unnecessarily loose. Resolving these issues

led to the decade-long study of adaptive online learning.

1.2 Adaptive online learning

“Adaptivity” is quite a common terminology in the literature, but a consensus on its

meaning has not been reached. In control theory, there is the concept of “adaptive

control”, while numerous deep learning optimizers have been proposed with “adaptive”

in their names. However, they do not mean the same as the idea of adaptive online

learning, and even the latter lacks a universal definition within the community.

Actually, to convey its main idea, the clearest presentation we found is from statistics

(Johnstone, 2019, Section 6), which is a discussion on adaptive statistical estimators :

An estimator that is exactly minimax for a given parameter set will depend,

often quite strongly, on the details of that parameter set. While this is

informative about the effect of assumptions on estimators, it is impractical

for the majority of applications in which no single parameter set comes as

part of the problem description.

Fortunately, it turns out that certain such estimators can come close to

being minimax over a whole class of parameter sets. We exchange exact

optimality for a single problem for approximate optimality over a range of

circumstances.

In short, an adaptive statistical estimator can achieve near minimax optimality

simultaneously over a range of problem settings. Similarly, an adaptive online learning
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algorithm should achieve near (typically, up to poly-logarithmic factors) minimax

optimal regret bounds simultaneously over a range of OCO settings. Still within

the static regret, let us consider a simple example: in our analysis of OGD, the

tuning of OGD depends on D, which is the known size of the comparator class

U . This motivates a natural question on the existence of adaptive online learning

algorithms: can a single algorithm work well simultaneously in a range of OCO settings

with different-sized comparator classes? Actually, such D-adaptivity is a classical

objective in adaptive online learning called parameter-free online learning, which will

be considered frequently in this dissertation.

In addition, just like how both minimax algorithms and minimax optimal bounds

are defined in the previous section, we can define adaptive regret bounds alongside

the aforementioned adaptive online learning algorithms. Adaptive regret bounds refer

to the generic regret bounds achieved by adaptive online learning algorithms, which,

by definition, can be specialized to individual “restricted” OCO settings and almost

match the minimax optimal bounds there.

The key benefit of adaptive online learning is that, the regret bound depends on the

complexity of the actually encountered problem instance, rather than the complexity

of the considered OCO setting. To be more specific, let us first look at the O(DG
√
T )

static regret bound of OGD for the meaning of “complexity”.

• D is an upper bound of ∥u− x1∥2, which captures how hard the static comparator

class is. A larger D amounts to allowing comparators to deviate more from

the initialization of the agent, such that guaranteeing low regret becomes more

difficult.

• G is the Lipschitz constant, which captures the complexity of the environment

class. A larger G grants more power to the environment, which is unfavorable

for the agent.
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Together, the product DG measures the complexity of the OCO setting with static

regret, G-Lipschitz losses, and comparators satisfying ∥u− x1∥2 ≤ D – this product

is the key quantity in the O(DG
√
T ) bound.

In contrast, an adaptive6 regret bound should not be tied to the complexity of any

particular OCO setting. That is, if the actual comparator satisfies ∥u− x1∥2 ≤ D′ for

some different unknown D′, and the actual losses are G′-Lipschitz for some different

unknown G′, then an ideal adaptive bound needs to be Õ(D′G′
√
T ), almost matching

the minimax optimal rate O(D′G′
√
T ). As a result, the corresponding adaptive

algorithms are insensitive to any D and G given beforehand,7 which are typically

inexact estimates. Instead, the goal is to achieve generic static regret bounds like

Õ(∥u− x1∥2maxt ∥gt∥2
√
T ), where ∥u− x1∥2 captures the complexity of the actual

comparator u, and maxt ∥gt∥2 captures the complexity of the actual environment. It

should be noted that the adaptivity with respect to both D and G is only used as an

illustration; even here, there are finer measures of instance complexity than the ones

above. Common types of adaptivity are surveyed in Section 1.4.

To summarize, adaptive online learning aims to replace problem complexities in

the minimax optimal regret bounds by instance complexities, without knowing the

latter beforehand. We say the algorithm or its bound adapts to a certain parameter of

the problem if the latter in the minimax regret bound is replaced by a finer instance-

dependent quantity. Such instance optimality is the main advantage of adaptive online

learning, if we can algorithmically achieve it. Stemming from this central advantage,

we list a few more interpretable benefits below. They have certain overlaps, and might

be viewed as different ways to express similar ideas.

• The instance complexities are upper-bounded by the problem complexities,

therefore adaptive regret bounds are no worse than minimax optimal regret

6With respect to both D and G.
7For an opposite case, compare it to OGD, where the standard learning rate is η = DG−1T−1/2.
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bounds up to poly-logarithmic factors, and can improve the latter when the

instance is “easy”.

• Adaptive algorithms do not need many explicit restrictions on the problem

setting, while achieving good theoretical performance as if such restrictions

are imposed. Therefore, adaptive online learning can handle more general,

“unrestricted” settings than minimax online learning.

For example, the D-adaptive algorithms discussed in this section typically

do not require any a priori upper bound on ∥u− x1∥2. Instead, they bound

supEnv RegretT (Env, u) by a near optimal function of u, which holds for all u

in the domain X , even if X is unbounded. In contrast, minimax algorithms like

OGD require a restricted comparator class as input, and the optimality of the

obtained regret bound is only established on this comparator class.

• Compared to minimax algorithms, the performance of adaptive algorithms

depends weakly on their hyperparameter settings.

For example, the regret bound of OGD depends polynomially on η and η−1.

In the practice of ML training, a grid search is often needed to determine

η, due to the importance of this hyperparameter. It will be shown that the

regret bound of D-adaptive algorithms depend only logarithmically on their

hyperparameters. That is, adaptive algorithms are theoretically more robust to

suboptimal hyperparameter tuning.

• Finally, the instance complexity is not a purely objective quantity – it depends

on how much prior knowledge the learning agent has on the problem instance.

The more prior knowledge it has, the easier the instance becomes. Therefore,

adaptive online learning has an appealing Bayesian interpretation, with numerous

potential applications. In our opinion, this is perhaps the strongest motivation
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to study adaptive online learning, so the next section is devoted to this topic.

A bit more discussion before we proceed: in the application of OCO to downstream

tasks, there exists a completely different, but still plausible definition of adaptivity.

Given any sublinear (in T ) bound on supEnv,uRegretT (Env, u), it is sometimes ar-

gued that the learning agent “adapts” to the unknown environment by finding the

environment-dependent optimal fixed prediction. There, adaptivity is not defined

by the rate of convergence, but by the target of convergence; consequently, minimax

algorithms in our definition are “adaptive” in that regard. As far as we understand,

such a notion shares a similar spirit as the classical topic of adaptive control. In

contrast, our definition of adaptivity is stronger, more quantitative, and closer to the

convention in statistics.

1.3 Bayesian interpretation

As we briefly discussed in the previous section, adaptive online learning is especially

motivated by its ability to incorporate prior knowledge. We now expand this argument

with details.

In practice, machine learning tasks usually do not start from scratch. Before

learning starts, we often have a reasonable guess on the task and the optimal decision,

which should ideally make learning easier. Let us consider two examples.

• The workflow for a number of deep learning tasks consists of two steps, pretraining

and fine-tuning. This is motivated by the lack of data or computational resources

on the specific application of interest, which is quite common in practice. To

address this issue, one could first pretrain a general purpose model on large

open-access datasets with similar modality. Then, starting from the pretrained

model, one could fine-tune it using the actual data, in order to enhance its

performance on the more specific application. The rationale is that pretraining
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provides a “warm start” for fine-tuning, which reduces the required amount of

samples and training iterations. To rigorously justify this idea, the fine-tuning

algorithm needs to provably utilize good initializations to accelerate.

• A trend in modern machine learning is to rely on more data rather than domain

knowledge, as the later can be an imperfect abstraction of the real world.

However, domain knowledge like physical simulation, if present, is still helpful

for achieving better performance and reducing the amount of data required.

Currently, many mature engineering solutions, like weather forecasting, are still

based on simulating scientific models rather than machine learning. This poses

a natural question: given an algorithm based on domain knowledge, can we

provably incorporate it into the machine learning pipeline?

Adaptive online learning could provide an answer to the above questions. As

introduced in the previous section, its performance guarantee depends on instance

complexities rather than problem complexities. Here we argue that such an “instance”

should be viewed more generally. It can be a problem instance, which is objective, and

also the agent’s inductive bias, which is subjective. Concretely, the ∥u− x1∥2 term,

which we described as the complexity of the comparator u, is actually determined

by both u and the agent’s initialization x1. Therefore, it is more accurate (and more

practically interesting) to say that, adaptive regret bounds depend on the complexity of

the actually encountered problem instance relative to the agent’s prior knowledge. The

pretrained model and the scientific simulator discussed above are both prior knowledge

independent of machine learning. They can be provably exploited by adaptive online

learning algorithms, but not minimax algorithms.

We also emphasize the difference between the prior knowledge and the oracle

knowledge. In this dissertation, the oracle knowledge refers to knowing the true

problem instance, which is only revealed after learning completes. In contrast, the
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prior knowledge is a guess before the game starts, which is “causal”, but not necessarily

correct. This shares the same idea as Bayesian priors in statistics.

1.4 Several types of adaptivity

Previous sections focused on the definition of adaptive online learning and its motiva-

tion. We now survey several common types of adaptivity in the literature. Each type

has its own set of techniques, while intricate connections exist across different types.

It is not a complete literature review – the latter goes way deeper into the details,

and will be present in later chapters for clarity.

Starting from the static regret, we first introduce a concept that essentially belongs

to adaptive online learning, but typically also pursued by minimax algorithms as

well. Because of this, it is often excluded from modern discussions of adaptive online

learning, therefore we number it as “Type 0”.

(Type 0) Anytime regret In the definition of the OCO game (Definition 1), we

deliberately treated the time horizon T vaguely, without specifying whether it is known

by the learning agent or not. If T is known, then as introduced in Section 1.1, OGD

with the learning rate η ∝ DG−1T−1/2 guarantees the minimax optimal regret bound.

A type of adaptivity originates from a natural follow-up question: can we achieve near

minimax optimal regret bounds without knowing T? Such regret bounds are called

anytime.

The anytime guarantee is of great importance in both theory and practice, as it

characterizes the asymptotic convergence of the single algorithm we deploy. Achieving

this adaptivity is in general not hard – we could either use the adaptive learning rate

ηt ∝ DG−1t−1/2 in OGD, or the so-called doubling trick (Shalev-Shwartz, 2011), which

restarts the known-T algorithm on time intervals of doubling lengths. However, the

combination of such anytime property with other types of adaptivity can be much
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more involved, as we demonstrate in Chapter 2.

Now we turn to other types of adaptivity more commonly seen in modern discussions.

They will be numbered sequentially as Type 1 to 4.

(Type 1) Comparator adaptivity This is the central theme of the dissertation.

The main results will be developed in this regime, and the extension to other types of

adaptivity will be discussed.

Also known as parameter-freeness in some existing works, comparator adaptivity

is primarily meant for problems where either (i) the domain X is unbounded; or (ii)

the domain is bounded with diameter D, but D is very large. A static regret bound is

comparator adaptive if it depends on the comparator u with the order Õ(∥u− ũ∥
√
T ),

where ∥u− ũ∥ characterizes the distance between the comparator to any reference

point (i.e., prior) ũ chosen at the beginning. Typically, the prior ũ is the initialization

x1 of the algorithm. For example, a standard comparator adaptive bound (Orabona

and Pál, 2016; Cutkosky and Orabona, 2018) guarantees for all u ∈ X ,

sup
Env

RegretT (Env, u) = O
(
∥u− ũ∥2G

√
T log(∥u− ũ∥2T )

)
,

which is optimal in a strong sense, and subsumes the O(DG
√
T ) bound of OGD up

to logarithmic factors. The cumulative loss of the learning agent can be bounded by

the oracle inequality

T∑
t=1

lt(xt) ≤ inf
u

[
T∑
t=1

lt(u) + sup
Env

RegretT (Env, u)

]
.

Notably, following the Bayesian interpretation (Section 1.3), the bound depends

on the quality of the prior ũ. We say a prior is good if it is close to the optimal

comparator in hindsight, i.e., the fixed prediction u∗ with the lowest cumulative loss∑T
t=1 lt(u

∗), if it exists. In the context of training ML models, the latter means the
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optimal model parameter which the optimizer aims to find, and we may obtain a guess

of it via pretraining. A comparator adaptive algorithm allows using this guess to

optimally speed up the convergence of the optimizer. In contrast, minimax algorithms

like OGD fail to guarantee optimal bounds in this regime – as shown in Section 1.1,

the bound of OGD only scales quadratically with respect to ∥u∗ − ũ∥2 without a priori

restrictions on the latter.

Comparator adaptive algorithms are also called parameter-free algorithms because

unlike OGD, they usually do not have learning rates. For training ML models, the

benefit is less amount of hyperparameter-tuning – comparator adaptive algorithms

can work reasonably well even in their default setup (Orabona and Tommasi, 2017;

Chen et al., 2022).

(Type 2) Gradient adaptivity The second type of adaptivity aims to improve

the factor G in the minimax bound. Specifically, instead of depending explicitly on G

and T , gradient adaptive bounds depend on observed gradient sums, e.g.,
∑T

t=1 ∥gt∥2

or
∑T

t=1 ∥gt∥22.

For OCO with bounded domain this can be achieved easily, as one can choose an

adaptive learning rate ηt = D/
√∑t

i=1 ∥gi∥22 in OGD and guarantee supuRegretT (u) =

O(D
√∑T

t=1 ∥gt∥22) (Streeter and McMahan, 2010), even without the a priori Lipschitz

assumption ∥gt∥2 ≤ G. A notable example empowered by this idea is AdaGrad (Duchi

et al., 2011), which is a widely applied neural network optimizer. However, going

beyond a bounded domain is more involved, as solutions (Cutkosky and Orabona,

2018; Mhammedi and Koolen, 2020) should go through the comparator adaptivity

framework to achieve both forms of adaptivity simultaneously.

It is also possible to incorporate priors, which amounts to guessing the loss

function lt before the prediction xt is made, and using that to determine a good xt.

Quantitatively, this replaces the gradient variance term
∑T

t=1 ∥gt∥
2
2 by

∑T
t=1 ∥gt − g̃t∥

2
2,
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where g̃1:T is a sequence of hallucinated gradients. Such an idea is also called optimistic

online learning (Chiang et al., 2012; Rakhlin and Sridharan, 2013; Steinhardt and

Liang, 2014).

All the previous types are discussed under the static regret. Next, let us move to the

dynamic regret (1.1), without the implicitly assumed stationarity of the environment.

Here the idea of adaptivity plays a more fundamental role, as there does not exist8

a sublinear minimax optimal regret bound without restrictions on the comparator

class. That is, for any OCO algorithm, there exist an environment Env and a

dynamic comparator {ut}t∈Z satisfying Assumption 1, such that the dynamic regret

RegretT (Env, u1:T ) = Ω(T ).

(Type 3) Dynamic regret The third type of adaptivity aims at dynamic regret

bounds that depend on the structural simplicity of the comparator sequence {ut}t∈Z.

Typically, the comparator is considered “easy” if its path length P =
∑T−1

t=1 ∥ut+1 − ut∥2
is low. Given an a priori upper bound on P , one could apply OGD with a learning

rate that depends on this upper bound, resulting in minimax optimality (Zinkevich,

2003). The goal of adaptive online learning is relaxing such a requirement, while still

performing as if this knowledge is given. Specifically, if the domain X is bounded

with diameter D, then without requiring an additional upper bound on P , one could

achieve (Zhang et al., 2018a)

sup
Env

RegretT (Env, u1:T ) = Õ
(
G
√
(D + P )DT

)
.

In the best case, P = 0, thus the RHS is Õ(DG
√
T ), almost matching the classical

OGD static regret bound. In the other extreme, P = O(DT ), and the regret bound is

trivially Õ(DGT ).

8Excluding the trivial case where the domain only contains a single element.
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Notice that P is determined by u1:T , therefore on a broader scope, such bounds

can also be called comparator adaptive, with certain overlap with the first type of

adaptivity.

(Type 4) Local adaptivity The fourth type of adaptivity is also meant for

nonstationary environments, but the definition is fundamentally different from the

dynamic regret. It is implicitly assumed that the time horizon [1 : T ] can be segmented

into shorter subintervals where the environment is stationary, therefore we should

consider the static regret on local intervals. Let us again consider the setting with

D-bounded domain.

Specifically, the goal is to design an algorithm such that on any subinterval

[T1 : T2] ⊂ [1 : T ], the local static regret on [T1 : T2], i.e.,

Regret[T1:T2](Env, u) :=

T2∑
t=T1

lt(xt)−
T2∑

t=T1

lt(u),

is sublinear in the interval length T2 − T1 + 1, regardless of Env and u. If the interval

length T2− T1 + 1 is known, then OGD with learning rate η = DG−1(T2− T1 + 1)−1/2

achieves the minimax optimal local static regret O(DG
√
T2 − T1 + 1). Without

knowing the interval length T2 − T1 + 1, there are adaptive algorithms (Daniely et al.,

2015; Jun et al., 2017) achieving Õ(DG
√
T2 − T1 + 1), matching the minimax optimal

rate up to poly-logarithmic factors.9

It is worth noting that this type of adaptivity is called strongly adaptive online

learning in the literature (Daniely et al., 2015), improving the so-called weakly adaptive

online learning (Hazan and Seshadhri, 2009). It seems that this terminology is purely

due to historical reasons: the latter was proposed in the early stage of online learning,

and it was probably hard to anticipate the development of adaptive online learning a

9As one could expect, the logarithmic factor depends on the time horizon T .
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decade later. To differentiate this concept with other forms of adaptivity, we will also

call it local adaptivity.

Finally, note that for Type 3 and 4, we did not discuss their Bayesian interpretations.

This is a current research frontier, and the second part of this dissertation will study

how to incorporate Bayesian priors into Type 3.

1.5 Overview of the dissertation

This dissertation is devoted to designing better adaptive online learning algorithms.

The “better” here can be interpreted in multiple ways, including quantitatively

improved regret bounds, simplified analysis, clearer intuition and easier integration

with Bayesian priors. A few different techniques are presented, loosely centered around

a central theme: ultimately, online learning is a “time-related” problem, therefore we

should more closely examine the role of time in designing algorithms.

Specifically, the dissertation is divided into two parts.

• Part I focuses on temporal continuity. The key idea is that although OCO

is a discrete time game-theoretic model, we can design algorithms by scaling

it towards a continuous time limit, which involves less amount of guessing

than the traditional approach. Such a view has been mostly overlooked by

the online learning community, but recently, it started to pick up interests

from a mathematical perspective, within the fields of differential equations and

stochastic calculus. There, the emphasis is on rigorously connecting the obtained

Partial Differential Equation (PDE) to the Bellman equation of the OCO game.

This dissertation will focus more on the algorithmic implications, specifically

presenting progresses in adaptive online learning.

Chapter 2 presents the main algorithmic framework. By solving the continuous

time PDE, we obtain a comparator adaptive (Type 1) online learning algorithm
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based on an adaptive potential function. Quantitatively, its static regret bound

achieves for the first time (i) the optimal loss-regret tradeoff, which will be

rigorously defined; and (ii) the optimal leading constant. Accompanying lower

bounds are also provided.

Chapter 3 applies the continuous time framework to a variant of OCO with

switching costs, achieving the first optimal comparator adaptive regret bound

there (in a certain strong sense). More importantly, this procedure shows how

the continuous time scaling connects different online learning settings, allowing

an easier transfer of algorithmic insights. The benefits are extended to another

classical online learning problem called Learning with Expert Advice (LEA).

• Part II focuses on temporal representation. The key idea is to introduce time-

dependent features into OCO, effectively turning it into Online Linear Regression

(OLR). Although features are extremely common in machine learning, typically

they are defined from spacial variables, with no explicit time dependence. Draw-

ing novel connections to the wavelet theory, we show that this natural OLR

approach turns out to be stronger than the state-of-the-art, more sophisticated

methods.

Specifically, Chapter 4 studies an objective called unconstrained dynamic regret,

which unifies two classical types of adaptive online learning: the comparator

adaptivity (Type 1) and the dynamic regret (Type 3). Such a regret bound

is guaranteed to be sparsity-adaptive by our OLR algorithm; that is, given a

collection of temporal features, the bound depends on how sparsely such features

can represent the comparator sequence. The version with Haar wavelet features

improves the best path length (i.e., P ) dependent dynamic regret bounds from

the literature.

Finally, Chapter 5 concludes the dissertation and discusses future directions.
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Limitation of scope The scope of the dissertation is limited in the following ways.

First, we only consider online learning with full information feedback, i.e., the entire

loss function lt or at least its gradient gt ∈ ∂lt(xt) is observed. The related bandit

setting, where the feedback is the function value lt(xt), is not considered. Second, we

focus on intrinsically online and adversarial problems, therefore omit the specialization

of our results to (IID) stochastic optimization. This is framed as the online-to-batch

conversion in the literature, with its own nontrivial subtleties.

1.6 Notation

Here we list the common notations throughout this dissertation. More specialized

notations are defined later when needed.

For two integers a ≤ b, [a : b] is the set of all integers c such that a ≤ c ≤ b; the

brackets are removed when on the subscript, denoting the tuple with indices in [a : b].

|S| denotes the cardinality of a finite set S.

R+ and R++ are the sets of nonnegative and strictly positive real numbers, respec-

tively.

0 is a zero vector or matrix, which should be clear from the context.

We use ∥·∥ for the Euclidean norm of vectors and the spectral norm of matrices.

These are the default norms, unless specified otherwise.

Bd denotes the unit d-dimensional Euclidean norm ball centered at the origin.

ΠV(x) is the Euclidean projection of x to a closed and convex set V .

∆(d) is the d-dimensional probability simplex.

KL(p||q) is the Kullback–Leibler divergence from the distribution q to p. When

they are discrete,

KL(p||q) =
∑
x

p(x) log
p(x)

q(x)
.

λmax(A) is the largest eigenvalue of a real symmetric matrix A.
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Treating all vectors as column vectors, span(A) represents the column space of a

matrix A.

For a function f , let f ∗ be its Fenchel conjugate: f ∗(θ) = supx[⟨θ, x⟩ − f(x)].

If the function f is convex, then ∂f(x) denotes its subdifferential at x.

log denotes natural logarithm when the base is omitted, and log+(·) := 0 ∨ log(·).

polylog(·) denotes a poly-logarithmic function of its input.

Õ(·) is the Big-Oh notation, neglecting poly-logarithmic factors. We will use

“logarithmic” and “poly-logarithmic” interchangeably.
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Temporal Continuity
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Chapter 2

Comparator Adaptivity via PDE

This chapter is based on (Zhang et al., 2022b). The goal is to improve existing

comparator adaptive static regret bounds, using a new design approach in continuous

time. Section 2.1 motivates the problem and summarizes our results. Section 2.2

surveys related works. Section 2.3 introduces useful techniques in the literature, which

will be applied frequently in this dissertation. The new continuous time framework is

presented in Section 2.4, which converts algorithm design to solving a PDE. Section 2.5

presents a specific algorithm obtained from this framework, achieving a strong notion

of optimality. Experiments are presented in Section 2.6. Section 2.7 concludes this

chapter and discusses future directions. All the proofs are deferred to Section 2.8.

Setting We consider OLO (Definition 3) with Lipschitz losses (Assumption 1) and

unknown time horizon T . Without loss of generality, we assume the Lipschitz constant

G = 1 and the domain X = Rd, therefore the problem is also called (anytime)

unconstrained OLO.1 As discussed in Chapter 1, minimax guarantees become vacuous

in the unconstrained setting, so the proposed algorithm needs to be comparator

adaptive.

Furthermore, as shown in Section 1.4, comparator adaptive algorithms require a

prior ũ, which is typically their initialization. Without loss of generality, this is set to

1It is known that (even time-varying) constraints on the domain can be imposed on any given
unconstrained algorithm, without essentially changing its regret bound (Cutkosky and Orabona,
2018; Cutkosky, 2020). We survey this technique in Section 2.3. In other words, the unconstrained
setting is no easier than the constrained setting.
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the origin 0. General ũ can be handled by simply shifting the coordinate system.

Notation Since the adaptivity to the adversarial environment Env is not considered

in this chapter, we will bound the supremum of the static regret over the environment,

defined as

RegretT (u) := sup
Env

RegretT (Env, u) = sup
Env

(
T∑
t=1

⟨gt, xt − u⟩

)
. (2.1)

Notably, RegretT (0) = supEnv

∑T
t=1 ⟨gt, xt⟩, which represents the worst case cumulative

loss of the algorithm.

Also, we will use potential functions in the form of V (t, S): t ∈ N+ is the time,

and S is a sufficient statistic. If V (t, S) is twice-differentiable, let ∇tV , ∇ttV , ∇SV

and ∇SSV be its first and second order partial derivatives, with respect to its two

arguments respectively.

2.1 Motivation and contribution

Comparator adaptive online learning was originally motivated by the need to handle

unbounded domains. This is of great practical importance, as in ML training for ex-

ample, the parameter of the model is usually unbounded a priori. Minimax algorithms

fall short in this setting, as the standard analysis of OGD with time-invariant learning

rates η guarantees (cf., Section 1.2)

RegretT (u) ≤
∥u∥2

2η
+

1

2
ηG2T.

The optimal RHS is O(∥u∥
√
T ), but this is not achievable simultaneously for all

u ∈ Rd, since the distance to an arbitrary comparator (i.e., ∥u∥) is never known

beforehand. Realistically, one could only set η = O(1/
√
T ) and obtain O(∥u∥2

√
T )

regret, which is suboptimal in the order of ∥u∥.
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Improving this result requires a drastically different procedure, and the predominant

one is the potential framework. Given a potential function V (t, S), the key idea is

to accumulate the history into a “sufficient statistic” St = −
∑t−1

i=1 gi and predict the

partial derivative ∇SV (·, ·) at (t, St), i.e., xt = ∇SV (t, St). Through this procedure,

designing new algorithms is converted to a more tangible task of finding good potential

functions. Specifically, with an arbitrary constant C, existing works (McMahan and

Orabona, 2014; Orabona and Pál, 2016; Mhammedi and Koolen, 2020) adopted the

one dimensional potential

V (t, S) =
C√
t
exp

(
S2

2t

)
(2.2)

and its variants to achieve the comparator adaptive regret bound

RegretT (u) ≤ C + ∥u∥O
(√

T log(C−1∥u∥
√
T )

)
. (2.3)

This bound is anytime (see Type 0 in Section 1.4), i.e., it holds simultaneously for all

time horizon T ∈ N+. Among all the achievable upper bounds with RegretT (0) ≤ C,

the order of ∥u∥ and T here is optimal up to multiplicative constants (Streeter and

Mcmahan, 2012; Orabona, 2013). These results have been the gold standard in

the literature, and due to their weak dependence on the hyperparameter C, the

associated algorithms are called “parameter-free algorithms”, with demonstrated

practical advantages (Orabona and Tommasi, 2017).

Despite these strong results, there is still room for improvement though. For

example, in ML training, requiring a constant RegretT (0) all the time amounts to a

strong belief that the initialization of the model is close to the optimal parameter,

which somewhat contradicts the use of an unconstrained domain in the first place.

Reflected in the regret bound, the RHS of (2.3) can be more generally viewed as a

loss-regret tradeoff between the values of RegretT (u) at small ∥u∥ and large ∥u∥: if
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the cumulative loss RegretT (0) is allowed to increase with T , then one may obtain

lower regret with respect to far-away comparators. This will be favorable in high

dimensional problems, as good initializations become harder to obtain.

The question now becomes, what is the optimal loss-regret tradeoff, and how to

efficiently achieve it? As a first attempt, one could further assume a known time

horizon T , set C =
√
T in (2.3) and obtain (McMahan and Orabona, 2014)

RegretT (u) ≤
√
T + ∥u∥O

(√
T log ∥u∥

)
. (2.4)

With respect to T alone, RegretT (u) = O(
√
T ). Since it matches the standard minimax

lower bound for constrained OLO, it is reasonable to consider this loss-regret tradeoff

as optimal. The real challenge is an anytime bound – existing arguments rely on

the well-known doubling trick 2 (Shalev-Shwartz, 2011), which not only is notoriously

impractical, but also leads to an extra multiplying constant. Perhaps due to this

reason, regret bounds like (2.4) have received less attention than (2.3), despite their

theoretical advantages.

This chapter aims at a practical and optimal approach towards an anytime version

of (2.4), which requires a departure from existing techniques. Specifically, we will

go back one step and reconsider the design of potential functions in unconstrained

OLO. The classical workflow is based on heuristic guessing, which is challenging

when the suitable potential is not an elementary function (e.g., involving complicated

integrals or series). In contrast, we propose a framework based on continuous time

scaling, which reduces the amount of guessing and allows designing more complicated

potentials. Eventually, as a byproduct, we obtain a concrete new algorithm with the

optimal loss-regret tradeoff.

Result and contribution As motivated above, our contributions are twofold.

2Running the fixed-T algorithm on consecutive time intervals of doubling lengths, i.e., [2i : 2i+1−1].
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• We propose a framework that uses solutions of a specific Partial Differential

Equation (PDE) as potential functions. To this end, we characterize minimax

optimal potentials via a backward recursion, and a PDE arises in its continuous-

time limit. Solutions of this PDE approximately solve the discrete-time recursion.

Therefore, one may search for suitable potentials within such solutions and their

variants, which is a more structured procedure than direct guessing.

• Using our framework, we design a one dimensional potential which is not

elementary and hard to guess without the help of a PDE. For any hyperparameter

C > 0, the induced algorithm guarantees

RegretT (u) ≤ C
√
T + ∥u∥

√
2T

[√
log

(
1 +

∥u∥√
2C

)
+ 2

]
.

Our bound achieves the optimal loss-regret tradeoff (2.4) without the doubling

trick. Moreover, by constructing a matching lower bound, we further show

that the leading order term, including the constant multiplier
√
2, is tight. To

our knowledge, the proposed algorithm is the first to achieve such optimality

properties.

2.2 Related work

Unconstrained OLO Mcmahan and Streeter (2012) proposed the first comparator

adaptive algorithm with O(∥u∥
√
T log(∥u∥T )) regret, which was later improved to

O(∥u∥
√
T log(∥u∥T )) by a potential-based algorithm (McMahan and Orabona, 2014).

This is the optimal rate (Mcmahan and Streeter, 2012; Orabona, 2013, 2019) under

the constraint RegretT (0) ≤ constant. The analysis was streamlined in (Orabona

and Pál, 2016; Cutkosky and Orabona, 2018) through a coin-betting game, in (Foster

et al., 2018) through the Burkholder method, and in (Chen et al., 2021; Jacobsen

and Cutkosky, 2022) through aggregating non-adaptive algorithms. The obtained



31

algorithms find applications in differential privacy (Jun and Orabona, 2019; van der

Hoeven, 2019), combining optimizers (Cutkosky, 2019b, 2020; Zhang et al., 2022a)

and training neural networks (Orabona and Tommasi, 2017; Chen et al., 2022).

Among all these results, a shared limitation is the focus on RegretT (0) ≤ constant.

Other loss-regret tradeoffs are less explored, both theoretically and practically. More-

over, the optimality of leading constants has not been considered.

Differential equations for online learning Recently, applying differential equa-

tions in online learning has received growing interests. The first idea was proposed by

Kapralov and Panigrahy (2011), where a potential function for Learning with Expert

Advice (LEA) (Littlestone and Warmuth, 1994) was designed by solving an Ordinary

Differential Equation (ODE). As a key benefit, the obtained regret bound achieves

a tradeoff with respect to different individual experts. The proposed techniques

were later applied to the discounted setting (Andoni and Panigrahy, 2013) and the

movement-constrained setting (Daniely and Mansour, 2019).

An improved approach uses PDEs (rather than ODEs) to generate time-dependent

potential functions. Still considering the LEA problem, such works aim at the optimal

regret bound nonasymptotic in the number of experts. Zhu (2014) first derived

a PDE to characterize the continuous-time limit of LEA, whose arguments were

streamlined by Drenska and Kohn (2020b). Exact solutions were obtained in special

cases (Bayraktar et al., 2020a,b; Drenska and Kohn, 2020b), and more generally,

algorithms based on approximate solutions were designed in (Rokhlin, 2017; Kobzar

et al., 2020a,b). Follow-up works considered history-dependent experts (Drenska and

Kohn, 2020a; Drenska and Calder, 2022), malicious experts (Bayraktar et al., 2020c,

2021) and drifting games (Wang and Kohn, 2022). Furthermore, Harvey et al. (2020)

extended this idea to the anytime setting with two experts, using a different, stochastic

derivation of the PDE.
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Our use of PDE in unconstrained OLO is inspired by these works on LEA. Notably,

there are two differences.

• Existing works considered settings that enforce a unique solution to the PDE,

by requiring a fixed time horizon, e.g., (Zhu, 2014; Drenska and Kohn, 2020b;

Kobzar et al., 2020a), or imposing boundary conditions (Harvey et al., 2020).

In contrast, we directly consider a class of solutions which are generally not

comparable to each other.

• In LEA, the goal of the PDE approach is to achieve the optimal uniform regret

(with respect to all experts). In contrast, we use a PDE to achieve performance

tradeoffs in adaptive online learning. Although tradeoffs among experts have

been studied using ODEs, e.g., (Kapralov and Panigrahy, 2011), here we focus

on the anytime setting where ODEs are not enough.

2.3 Standard techniques

Before starting, we survey two important techniques for comparator adaptive online

learning, which will be applied repeatedly throughout this dissertation. Together with

the loss-regret duality introduced in Section 2.4, they form the core machinery in the

existing research of comparator adaptivity.

First, we present a polar decomposition trick, which reduces the general OLO

problem from Rd to the 1D domain R. This is due to (Cutkosky and Orabona, 2018).

The idea is to separately learn the “magnitude” using a 1D comparator adaptive

algorithm, and the “direction” using standard OGD on a norm ball. Note that here

we assumed that ∥gt∥ ≤ 1.

Lemma 2.1 (Theorem 2 of (Cutkosky and Orabona, 2018)). For all T ∈ N+, if

A1d guarantees regret bound RegretT (u) ≤ RT (u) for all u ∈ R, then Algorithm 2.1

guarantees RegretT (u) ≤ RT (∥u∥) + ∥u∥
√
2T for all u ∈ Rd.



33

Algorithm 2.1 Reducing unconstrained OLO from Rd to R.
Require: A 1D unconstrained OLO algorithm A1d.
1: Define AB as OGD on Bd with learning rate ηt = 1/

√
t, initialized at the origin.

2: for t = 1, 2, . . . do
3: Obtain predictions yt ∈ R from A1d and zt ∈ Rd from AB.
4: Predict xt = ytzt ∈ Rd, observe the loss gradient gt ∈ Rd.
5: Return ⟨gt, zt⟩ and gt as the t-th loss gradient to A1d and AB, respectively.
6: end for

The second technique is due to (Cutkosky and Orabona, 2018; Cutkosky, 2020),

which imposes an additional domain constraint V on top of any OLO algorithm in a

black box manner.

Algorithm 2.2 Adding constraints in OLO.

Require: An OLO algorithmA and an arbitrary nonempty, closed and convex domain
V .

1: for t = 1, . . . , T do
2: Obtain the prediction x̃t from A.
3: Predict xt = ΠV(x̃t) and receive the loss subgradient gt.
4: Define a surrogate loss function ht as

ht(x) =

{
⟨gt, x⟩, if ⟨gt, x̃t⟩ ≥ ⟨gt, xt⟩,
⟨gt, x⟩+ ⟨gt, xt − x̃t⟩∥x−ΠV (x)∥

∥xt−x̃t∥ , otherwise.

5: Obtain a subgradient g̃t ∈ ∂ht(x̃t) and return it to A as the t-th loss subgradient.
6: end for

Lemma 2.2 (Theorem 2 of (Cutkosky, 2020)). Algorithm 2.2 has the following

properties for all t: (1) ht is a convex function on V. (2) ∥g̃t∥ ≤ ∥gt∥. (3) For all

u ∈ V, ⟨gt, xt − u⟩ ≤ ⟨g̃t, x̃t − u⟩.

2.4 Continuous time scaling

In general, our framework takes the discrete time unconstrained OLO problem to its

continuous time limit, where potential function candidates are obtained by solving

a PDE. It consists of three steps, detailed as follows. First, the OLO problem is
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converted to a coin-betting problem – the latter is easier from a technical perspective,

due to the absence of comparators.

2.4.1 Unconstrained coin-betting and duality

Unconstrained coin-betting is a two-person repeated game, with X = Rd and C = Bd

being the action space of the player and the adversary respectively. The player’s

policy p contains an initial bet x1 ∈ X and a collection of functions {p2, p3, . . .}, with

pt : Ct−1 → X . Similarly, the adversary’s policy a is defined as a collection of functions

{a1, a2, . . .}, with at : X t → C. Randomized betting strategies are not considered.

Fixing policies p and a on both sides, the game runs as follows. In the t-th

round, the player makes a bet xt = pt(c1:t−1) based on past coin outcomes. Then, the

adversary decides a new coin ct = at(x1:t), reveals it to the player, and the player gains

⟨ct, xt⟩ amount of money (effectively, the player loses money if ⟨ct, xt⟩ is negative).

The performance metric of the player is the total gained wealth

WealthT =
T∑
t=1

⟨ct, xt⟩ ,

where T is not pre-specified. In other words, the player aims to ensure an anytime

wealth lower bound against all possible adversaries.

Research on adversarial betting has a long history. In a seminal work, Cover

(1966) studied the setting with a fixed and known time horizon, where all achievable

lower bounds can be characterized via dynamic programming. The anytime setting

here is more involved, but due to a classical dual relation (McMahan and Orabona,

2014), solving it is equivalent to solving the unconstrained OLO problem we ultimately

care about: one can construct a unique OLO algorithm (Algorithm 2.3) from any

coin-betting algorithm A, and characterize its performance through Lemma 2.3.

Lemma 2.3 (Theorem 9.6 of (Orabona, 2019)). Let Ψ be any proper, closed and

convex function. For all T ∈ N+, the following two statements are equivalent:
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Algorithm 2.3 From coin-betting to OLO.

Require: An algorithm A for unconstrained coin-betting.
1: for t = 1, 2, . . . do
2: Query A for its t-th bet xt and predict it exactly in OLO.
3: Observe loss gradient gt and suffer ⟨gt, xt⟩.
4: Let ct = −gt and send it to A as the t-th coin outcome.
5: end for

1. The unconstrained coin-betting algorithm A guarantees WealthT ≥ Ψ
(∑T

t=1 ct

)
against any adversary.

2. The unconstrained OLO algorithm constructed from A guarantees RegretT (u) ≤
Ψ∗(u) for all u ∈ Rd. (Ψ∗ is the Fenchel conjugate of Ψ.)

This unconstrained coin-betting game generalizes an existing setting, which is

prevalent in the analysis of unconstrained OLO (McMahan and Orabona, 2014;

Orabona and Pál, 2016). The latter assigns an initial wealth C to the player, and the

player’s betting amount |xt| should be less than the total wealth it possesses at the

beginning of the t-th round. A budget constraint of this form faithfully models many

real-world investment problems, but since our ultimate goal is online learning rather

than any particular financial application, such a constraint is not necessary. Relaxing

it gives us greater flexibility to achieve general forms of regret tradeoffs beyond (2.3).

Intuitively speaking, the player in our setting can make decisions solely based on the

perceived risk-gain tradeoff, without being constrained by its budget.

2.4.2 Minimax coin-betting

The second step characterizes the unconstrained coin-betting game from a minimax

perspective. Rather than the value of the game, let us consider a refined quantity

called the value function.

Definition 4 (Value function). A function V : N×Rd → R is a value function of the

unconstrained coin-betting game if
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1. V (0, 0) = 0.

2. For all t ∈ N, V (t, ·) is continuous on Rd.

3. For all t ∈ N and S ∈ t · C,

V (t, S) = min
x∈X

max
c∈C

[V (t+ 1, S + c)− ⟨c, x⟩] . (2.5)

The recursive relation in Definition 4 is reminiscent of the conditional value function

previously studied in online learning (Rakhlin et al., 2012; McMahan and Abernethy,

2013; Drenska and Kohn, 2020b) and minimax dynamic programming (Bertsekas,

2012). The key difference is that we care about the anytime performance, therefore a

terminal condition to initiate the backward recursion (2.5) is missing. Rather than the

value-to-go, we model the value-so-far. This largely complicates the analysis, as the

solution of (2.5) is not unique anymore (e.g., V (t, S) = constant·S). In general, similar

to the concept of Pareto optimality, different value functions are not comparable as

they represent different tradeoffs on the shape of the wealth lower bound (ultimately,

the associated regret upper bound due to Lemma 2.3).

On the bright side, any value function can lead to a pair of player-adversary

strategies with tight wealth lower and upper bounds. Given a good value function (or

more generally, its approximation), a good betting algorithm can be naturally induced.

All proofs are deferred to Section 2.8.

Lemma 2.4. Given any value function V satisfying Definition 4,

1. There exists a player policy p∗ such that for all a and T ∈ N+,

WealthT ≥ V

(
T,

T∑
t=1

ct

)
.

In addition, for all t, the player’s bet p∗t (c1:t−1) depends on the past coins only

through their sum
∑t−1

i=1 ci.
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2. There exists an adversary policy a∗ such that for all p and T ∈ N+,

WealthT ≤ V

(
T,

T∑
t=1

ct

)
.

To proceed, let us further define the unit time as the time interval between

consecutive rounds in the coin betting game, and assign it to 1. In this way, the game

can be analyzed on the real time axis t ∈ R+, which prepares us for the scaling.

2.4.3 The limiting PDE

Intuitively, solving the backward recursion (2.5) is difficult due to its discrete formula-

tion. If a finer discretization on the time axis is adopted, then the recursion becomes

“smoother” which is easier to describe using continuous-time analysis. To this end, we

introduce a scaled coin-betting game. The scaling factors are due to an analogy to

existing coin-betting results (McMahan and Abernethy, 2013), since we aim to recover

the existing potential (2.2).

Definition 5 (Scaled game). Given ε > 0, the ε-scaled game is the unconstrained

coin-betting game with unit time ε2 and adversary action space ε · C. That is, actions

are taken every ε2 original unit time, and the adversary chooses the coin outcomes in

a scaled set ε · C instead of C.

Similar to Definition 4, we can define ε-scaled value functions Vε on the scaled

game. Moreover, let us extend its domain and assume it is twice-differentiable on

R++ × Rd. The backward recursion on Vε becomes

Vε(t, S) = min
x∈X

max
c∈C

[
Vε(t+ ε2, S + εc)− ⟨εc, x⟩

]
.

Similar to (Zhu, 2014; Drenska and Kohn, 2020b), we take a Taylor approximation on
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the RHS,

Vε(t+ ε2, S + εc) =

Vε(t, S) + ε2∇tVε(t, S) + ε ⟨c,∇SVε(t, S)⟩+
ε2

2
⟨∇SSVε(t, S) · c, c⟩+ o(ε2),

which leads to

0 = min
x∈X

max
c∈C

[
⟨c,∇SVε(t, S)− x⟩+ ε∇tVε(t, S) +

ε

2
⟨∇SSVε(t, S) · c, c⟩+ o(ε)

]
.

As ε approaches 0, the dominant term on the RHS is minx∈X maxc∈C ⟨c,∇SVε(t, S)− x⟩,

therefore the outer minimizing argument should be x = ∇SVε(t, S). Taking ε → 0

and plugging in C = Bd (i.e., the unit d-dimensional Euclidean norm ball), the result

is a second order nonlinear PDE for a limiting value function.

Definition 6 (Limiting value function). A function V̄ : R++ × Rd → R is a limiting

value function of the unconstrained coin-betting game if

∇tV̄ = −1

2
max{λmax(∇SSV̄ ), 0}. (2.6)

The PDE (2.6) can be regarded as a continuous-time approximation of the backward

recursion (2.5), and solving it, while still being challenging, is more tractable than

handling the discrete-time recursion itself. Given solutions of this PDE, one may

invoke a perturbed analysis of Lemma 2.4 and obtain corresponding wealth lower

bounds.

2.5 Optimal loss-regret tradeoff

To generate concrete algorithms using this framework, let us consider the one dimen-

sional convex case where the nonlinear PDE (2.6) becomes linear. Results can be

extended to the general dimensional case, due to the standard polar decomposition

technique (Lemma 2.1). To further comply with the duality lemma (Lemma 2.3),
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consider V̄ that are convex with respect to the second argument. Then, the PDE (2.6)

reduces to the one dimensional Backward Heat Equation (BHE)

∇tV̄ = −1

2
∇SSV̄ . (2.7)

Such a linear PDE has received considerable interest from a mathematical perspec-

tive (Miranker, 1961; Payne, 1975), since its initial value problem has an intriguing

ill-posed issue. Related to our task, an insightful work by Harvey et al. (2020) showed

that BHE gives rise to an optimal two-expert LEA algorithm – the proposed dis-

cretization techniques will be useful in our analysis as well. Our main observations

are twofold:

• The PDE framework recovers both the OGD potential and the existing com-

parator adaptive potential (2.2), thus appears to be a very general approach for

unconstrained OLO.

• The optimal potential that Harvey et al. adopted for two-expert LEA is also

strong for adaptive online learning, resulting in an optimal unconstrained OLO

algorithm for general dimensional problems.

2.5.1 Solutions to algorithms

Concretely, motivated by the classical comparator adaptive potential (2.2), let us

consider the ansatz

V̄ (t, S) = tαg
(
c · tβS

)
, (2.8)

where α, β and c are constants, and g : R→ R is a one dimensional function to be

determined. For simplicity we omit shifting on S, t and the function value. In other

words, once we find appropriate (α, β, c) and g, we immediately obtain a more general

solution

V̄ (t, S) = C0 + (t+ τ)αg
(
c · tβ(S + S0)

)
,



40

with shifting constants C0, τ and S0. Moreover, any linear combination of two solutions

is also a solution, allowing the user to interpolate their induced behavior.

Plugging in (2.8) and letting z = c · tβS, the BHE (2.7) reduces to a second order

linear ODE for the function g:

c2t2β+1g′′(z) + 2βzg′(z) + 2αg(z) = 0.

Letting β = −1/2 and c = 1/
√
2, it becomes the standard Hermite type

g′′(z)− 2zg′(z) + 4αg(z) = 0, (2.9)

whose general solutions can be expressed in power series (Arfken et al., 2013, Chapter 7).

By varying the parameter α, we obtain a rich class of limiting value functions V̄ .

To construct coin-betting policies, the key idea is to use V̄ as a surrogate for the

actual value function V (Definition 4) and apply the same argument as in Lemma 2.4.

Specifically, the adversary should pick the coin outcome that maximizes the RHS of

the backward recursion (2.5), which is

ct ∈ argmax
c∈C

[
V̄

(
t,

t−1∑
i=1

ci + c

)
− ⟨c, xt⟩

]
. (2.10)

Since V̄ is convex and C = [−1, 1], the adversary can simply focus on the boundary

coins {−1, 1}, leading to the adversary policy presented in Algorithm 2.4.

Algorithm 2.4 PDE-based adversary betting policy.

Require: A limiting value function V̄ for 1D unconstrained coin-betting.
1: for t = 1, 2, . . . do
2: Receive the player’s bet xt and choose the coin outcome as

ct ∈ argmax
c∈{−1,1}

[
V̄

(
t,

t−1∑
i=1

ci + c

)
− ⟨c, xt⟩

]
. (2.11)

3: end for
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As for the player, the optimal bet is the one that minimizes the objective function

in (2.10), which is equivalent to the discrete derivative (denoted by ∇̄) shown in

Algorithm 2.5. Intuitively, the discrete derivative serves as an approximation of the

standard derivative in classical potential methods. Therefore, Algorithm 2.5 essentially

has a potential-based structure, with the potential function V̄ generated from a PDE.

Alternatively, Algorithm 2.5 can be interpreted as a discrete approximation of Follow

the Regularized Leader (FTRL) (Abernethy et al., 2008b) whose regularizer is the

Fenchel conjugate of V̄ (t, ·). The equivalence of potential functions and regularizers

has been discussed in (Orabona, 2019, Section 7.3).

Algorithm 2.5 PDE-based player betting policy.

Require: A limiting value function V̄ for 1D unconstrained coin-betting.
1: for t = 1, 2, . . . do
2: Choose the bet

xt = ∇̄SV̄

(
t,

t−1∑
i=1

ci

)

:=
1

2

[
V̄

(
t,

t−1∑
i=1

ci + 1

)
− V̄

(
t,

t−1∑
i=1

ci − 1

)]
. (2.12)

3: Observe the coin outcome ct and store it.
4: end for

2.5.2 Example

Before any technical analysis, let us demonstrate the generality of this framework

through a few examples. We show how existing algorithms can be derived from this

framework, and more importantly, there is a potential function which permits an

optimal loss-regret tradeoff.

For any α, let V̄α be a limiting value function obtained from (2.9). Let C > 0 be

any positive scaling constant.
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Warm up: α = 1. The Hermite ODE (2.9) has a solution g(z) = C(2z2 − 1),

resulting in V̄1(t, S) = C(S2 − t). Accordingly, Algorithm 2.5 bets xt = 2C
∑t−1

i=1 ci =

xt−1+2Cct−1, which is equivalent to OGD with the learning rate 2C. Notably, V̄1 also

satisfies Definition 4; that is, V̄1 is not only a limiting value function, but also a value

function for the discrete-time game. Therefore, both Algorithm 2.4 and Algorithm 2.5

can be directly analyzed through Lemma 2.4.

Recovering existing potentials: α = −1/2. The Hermite ODE can be solved

by g(z) = C exp(z2), resulting in V̄−1/2(t, S) = C · t−1/2 exp[S2/(2t)]. Such a

potential recovers the existing popular choice (2.2), and its time shifted version

C · (t + τ)−1/2 exp[S2/(2(t + τ))] also recovers the shifted potential (Orabona and

Pál, 2016). Different from the previous example, V̄−1/2 does not satisfy Definition 4.

Therefore, we should characterize its approximation error on the backward recursion

(2.5) in order to quantify the performance of the induced player policy.

A new potential: α = 1/2. The two linearly independent solutions of the Hermite

ODE are both useful. First, g(z) =
√
2Cz and V̄ (t, S) = CS. Such a potential

leads to betting a fixed amount in coin-betting and shifting the coordinate system

in unconstrained OLO. For now, let us focus on the other solution which is more

interesting.

g(z) = C

2z · z∫
0

exp(x2)dx− exp(z2)

 ,
and the corresponding potential is

V̄1/2(t, S) = C
√
t

2
S√
2t∫

0

 u∫
0

exp(x2)dx

 du− 1

 . (2.13)
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It is based on the integral of the imaginary error function erfi(u) =
∫ u

0
exp(x2)dx,3

therefore we will also call it the erfi potential.

Notably, Harvey et al. (2020) constructed a two-expert LEA algorithm from V̄1/2,

which achieves the optimal uniform regret. As for unconstrained OLO, we will show

that using V̄1/2 in Algorithm 2.5 leads to superior performance compared to V̄−1/2,

both in theory and in practice. Without the help of a PDE, such a potential has not

been discovered in adaptive online learning before.

2.5.3 Discretization

Now let us plug the potential functions derived above into the betting policy (Algo-

rithm 2.5). To begin with, define discrete derivatives of a limiting value function V̄

as

∇̄tV̄ (t, S) := V̄ (t, S)− V̄ (t− 1, S),

∇̄SSV̄ (t, S) := V̄ (t, S + 1) + V̄ (t, S − 1)− 2V̄ (t, S).

When doing this we extend the domain of V̄ (t, S) to t = 0, and assign V̄ (0, 0) = 0

without loss of generality.

The key component of this analysis is the Discrete Itô formula (Klenke, 2013;

Harvey et al., 2020). We slightly modify it for the coin-betting problem.

Lemma 2.5 (Lemma D.3 and D.4 of (Harvey et al., 2020), adapted). Consider

applying the player betting policy (Algorithm 2.5) against any adversary betting policy.

3Compared to the usual definition, an extra multiplying constant is removed to simplify the
writing.
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For all t ∈ N,

V̄

(
t+ 1,

t+1∑
i=1

ci

)
− V̄

(
t,

t∑
i=1

ci

)

≤ ct+1xt+1 +

[
∇̄tV̄

(
t+ 1,

t∑
i=1

ci

)
+

1

2
∇̄SSV̄

(
t+ 1,

t∑
i=1

ci

)]
︸ ︷︷ ︸

♢

. (2.14)

Moreover, equality is achieved when ct+1 ∈ {−1, 1}.

Summing (2.14) over t ∈ [0 : T − 1], the LHS becomes a telescopic sum which

returns V̄ (T,
∑T

i=1 ci), and the RHS contains WealthT =
∑T

t=1 ctxt which we aim to

bound – the remaining task is to quantify the sum ♢ in the bracket. Comparing ♢

to the BHE (2.7), one can see that ♢ represents the “discrete approximation error”.

Bounding this error is case-dependent, and we will only consider V̄1/2 here.

Lemma 2.6. For all t ∈ N+ and S ∈ [1 − t, t − 1], V̄1/2 with any parameter C > 0

satisfies

∇̄tV̄1/2(t, S) +
1

2
∇̄SSV̄1/2(t, S) ≤ 0,

and

∇̄tV̄1/2(t, S) +
1

2
∇̄SSV̄1/2(t, S) ≥

−C, t = 1,

−C
8
(t− 1)−3/2 exp

(
S2

2(t−1)

)(
S2

t−1
+ 1
)
, t > 1.

Combining the above, we immediately obtain a wealth lower bound for the player

policy constructed from V̄1/2. Its proof is due to a telescopic sum therefore omitted.

Lemma 2.7. For all T ∈ N+, Algorithm 2.5 constructed from V̄1/2 guarantees a wealth

lower bound

WealthT ≥ V̄1/2

(
T,

T∑
t=1

ct

)
,

against any adversary policy a.
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2.5.4 Back to OLO

Finally, we convert the above results in unconstrained coin-betting back to uncon-

strained OLO, using the duality lemma (Lemma 2.3). Furthermore, the standard polar

decomposition technique (Lemma 2.1) is adopted, which extends comparator adaptive

regret bounds in R to Rd. In combination, we arrive at our main unconstrained OLO

algorithm (Algorithm 2.6), whose regret bound is presented as Theorem 2.1.

Algorithm 2.6 PDE-based unconstrained OLO algorithm.

Require: A 1D limiting value function V̄ which satisfies (2.7).
1: Define AB as OGD on Bd with learning rate ηt = 1/

√
t, initialized at the origin.

2: Initialize a parameter (“sufficient statistic”) S1 = 0.
3: for t = 1, 2, . . . do
4: Let yt =

[
V̄ (t, St + 1)− V̄ (t, St − 1)

]
/2.

5: Query AB for its t-th prediction and assign it to zt.
6: Predict xt = ytzt ∈ Rd.
7: Observe the loss gradient gt ∈ Rd.
8: Return gt as the t-th loss gradient to AB, and let St+1 = St − ⟨gt, zt⟩.
9: end for

Theorem 2.1. For all T ∈ N+ and u ∈ Rd, Algorithm 2.6 constructed from V̄1/2

guarantees

RegretT (u) ≤ C
√
T + ∥u∥

√
2T

[√
log

(
1 +

∥u∥√
2C

)
+ 2

]
.

Theorem 2.1 offers two advantages over existing results.

1. It is a intrinsically anytime bound with the optimal4 loss-regret tradeoff, i.e.,

RegretT (u) = O
(
∥u∥

√
T log ∥u∥

)
, shaving a

√
log T factor from (2.3). Actually,

as discussed in Section 2.1, prior works can achieve this optimal tradeoff, but

they rely on the impractical doubling trick (Shalev-Shwartz, 2011) for an anytime

4In the sense that the asymptotic rate on T alone is optimal. That is, compared to the optimally
tuned gradient descent algorithm with regret O(∥u∥

√
T ), the price of being comparator adaptive is

only an extra
√
log ∥u∥ factor.
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bound. In contrast, our algorithm does not need any restart, thus making the

optimal loss-regret tradeoff practical.

2. In addition, Theorem 2.1 also attains the optimal leading term, including the

multiplying constant
√
2. To our knowledge, this is the first comparator adaptive

bound with the leading constant optimality. After deriving the algorithm-

independent lower bound, we will present the precise statement in Theorem 2.3.

2.5.5 Lower bound

Complementing the upper bound, we now derive regret lower bounds. They can be

either independent or dependent on the online learning algorithm – while traditional

regret lower bounds are algorithm-independent, our discretization approach allows

handling algorithm-dependent lower bounds quite easily. That is, we can characterize

the performance of the main algorithm in the worst case environment. This in

particular shows the tightness of our analysis in a strong sense.

Let us first consider algorithm-independent results.

Algorithm-independent lower bound Due to the duality lemma, the regret lower

bound follows from a wealth upper bound. The latter is presented as Lemma 2.8,

which has a similar shape as (Mcmahan and Streeter, 2012; Orabona, 2013), but

considers a different tradeoff, with tighter constants. The refinement is due to a better

characterization of the tail probability of random walks, through the Berry-Esseen

theorem.

Lemma 2.8. For all λ ≥ exp[(
√
2 + 1)/2], T ≥ 8πλ2 log λ, and any player betting

policy p that guarantees WealthT ≥ −C
√
T (e.g., Algorithm 2.5 constructed from

V̄1/2), there exists an adversary betting policy a such that the following statement

holds. In the coin-betting game induced by the policy pair (p,a),

1. |
∑T

t=1 ct| ≥
√
2T log λ;
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2. WealthT ≤ 2
√
2πλ
√
log λ · C

√
T .

Converting the above wealth upper bound to OLO, we have

Theorem 2.2. For all η ∈ (0, 1), U ≥ 12η−1C, T ≥ 2η2U2C−2 log(ηUC−1) and

any unconstrained OLO algorithm A that guarantees RegretT (0) ≤ C
√
T (e.g., Algo-

rithm 2.6 constructed from V̄1/2), there exists an adversarial OLO environment Env

and a comparator u ∈ Rd such that ∥u∥ = U and

RegretT (Env, u) ≥ (1− η) ∥u∥

√
2T log

η ∥u∥
2
√
πC

.

This result alone is perhaps a bit hard to interpret. Let us put it beside our main

regret upper bound (Theorem 2.1) to make the message clearer. Here, RegretAT (Env, u)

denotes the regret induced by an algorithm A, in the environment Env, and with the

comparator u.

Theorem 2.3. Define A1/2 as Algorithm 2.6 constructed from V̄1/2, then Theorem 2.1

leads to

lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,Env

Regret
A1/2

T (Env, u)

∥u∥
√
T log ∥u∥

≤
√
2.

Conversely, for all C and any unconstrained OLO algorithm A (e.g., A1/2) that

guarantees RegretAT (0) ≤ C
√
T for all T , we have

lim inf
U→∞

lim inf
T→∞

sup
∥u∥=U,Env

RegretAT (Env, u)

∥u∥
√
T log ∥u∥

≥
√
2.

It shows that under the optimal loss-regret tradeoff (i.e., RegretAT (0) ≤ C
√
T ),

our regret upper bound has the optimal leading constant, which is the first in the

literature.

Algorithm-dependent lower bound As for algorithm-dependent results, we aim

to evaluate how tightly our regret upper bounds characterize the performance of

our main potential function V̄1/2. To slightly simplify the analysis, let us consider

Algorithm 2.7 below, which is essentially the 1D version of our main algorithm
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(Algorithm 2.6), but without the need of a direction learner. With the definition

fT (S) := V̄1/2(T, S), its regret upper bound (Corollary 2.4) is a simple corollary of the

wealth lower bound (Lemma 2.7) and the duality lemma (Lemma 2.3). The proof is

omitted.

Algorithm 2.7 PDE-based 1D unconstrained OLO algorithm.

Require: A 1D limiting value function V̄ which satisfies (2.7).
1: for t = 1, 2, . . . do
2: Predict

xt =
1

2

[
V̄

(
t,−

t−1∑
i=1

gi + 1

)
− V̄

(
t,−

t−1∑
i=1

gi − 1

)]
.

3: Observe the loss gradient gt and store it.
4: end for

Corollary 2.4. For all T ∈ N+ and u ∈ R, Algorithm 2.7 constructed from V̄1/2

guarantees

RegretT (u) ≤ f ∗
T (|u|).

For this particular algorithm, we can construct a regret lower bound (Theorem 2.5)

by combining the Discrete Itô formula (Lemma 2.5), the lower bound of the discretiza-

tion error (Lemma 2.6) and the duality lemma (Lemma 2.3).

Theorem 2.5. For all T ∈ N+ and |u| ≤ (3/8)C(T + 3) exp(T/2), there exists an

adversarial environment Env such that Algorithm 2.7 constructed from V̄1/2 has the

regret lower bound

RegretT (Env, u) ≥ f ∗
T (|u|)−O(|u| log |u|).

It shows that everywhere on an exponentially growing class of comparators, the

regret upper bound (Corollary 2.4) is tight up to an additive, T -independent term.

More intuitively, the key message is that Corollary 2.4 tightly characterizes the

performance of our main potential V̄1/2.

Notice that here we fix the online learning algorithm and consider the worst case

environment. Results of this form are seldom studied in minimax online learning.
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The reason is that, minimax online learning cares about the worst case regret (1.3),

which is a real number. Therefore, both the minimax upper bound and the algorithm-

independent lower bound are expressed as real numbers, whose gap is generally not

hard to characterize. In contrast, we care about adaptive online learning, where upper

and lower bounds are both expressed as functions. The characterization of their gap

is much richer, therefore it is meaningful to study algorithm-dependent lower bounds.

This is technically easier than algorithm-independent results, so we can obtain a

tighter gap with the upper bound, and mathematically, the statement is easier to

interpret (compare Theorem 2.5 to Theorem 2.2).

2.6 Experiment

We now test our 1D unconstrained OLO algorithm (Algorithm 2.7) on a synthetic

OCO task, based on the standard reduction from OCO to OLO. Its simplicity allows

us to directly compute the regret, thus clearly demonstrate the benefit of the erfi

potential V̄1/2 over the existing potential V̄−1/2.

Consider the OCO problem with time invariant loss function |xt − u∗|, where

u∗ ∈ R is a constant hidden from the online learning algorithm. Reduced into OLO

(see Section 1.1), the environment Env picks the loss gradient gt = 1 if xt ≥ u∗,

while gt = −1 otherwise. The most natural comparator is the hidden constant u∗,

and the induced regret of OLO can be nicely interpreted as the cumulative loss of

OCO. That is, RegretT (Env, u
∗) =

∑T
t=1 gt(xt − u∗) =

∑T
t=1 |xt − u∗|. We will test

three algorithms: (i) Algorithm 2.7 constructed from V̄1/2 (our main contribution);

(ii) Algorithm 2.7 constructed from V̄−1/2; and (iii) the classical Krichevsky-Trofimov

(KT) algorithm (Orabona and Pál, 2016) which is an optimistic version of (ii) with

similar guarantees. Each algorithm requires one hyperparameter: we set C = 1 for the

first two, and set the “initial wealth” as
√
e for KT, which makes a fair comparison.
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Figure 2·1: One dimensional synthetic task with loss |xt − u∗|. Specif-
ically, Subfigure (b) fixes T = 500 and plots RegretT (Env, u

∗) of KT
minus RegretT (Env, u

∗) of our algorithm (V̄1/2) as a function of u∗.

Since RegretT (Env, u
∗) depends on both u∗ and T , there are multiple ways to

visualize our results. In Figure 2·1a, we fix u∗ = 10 and plot RegretT (Env, u
∗) as a

function of T (lower is better). For comparison, we also plot the regret upper bound

based on V̄1/2 (Corollary 2.4). Consistent with our theory, (i) the upper bound (red

dashed) closely captures the actual performance of our algorithm (blue); (ii) the two

baselines (orange and green) exhibit similar performance, and our algorithm improves

both when u∗ = 10.

In Figure 2·1b, we fix T = 500 and plot the difference between the regret of KT

and our algorithm (i.e., RegretT (Env, u
∗)|KT − RegretT (Env, u

∗)|ours as a function

of u∗, higher means our algorithm improves the KT baseline by a larger margin).

The obtained curve demonstrates the benefit of our special loss-regret tradeoff: while

sacrificing the regret at small |u∗|, our algorithm significantly improves the baseline

when u∗ is far-away. Notably, the magnitude of |u∗| represents the quality of initializa-

tion: with an oracle guess ũ, one can shift the origin to ũ, and the effective distance

to u∗ becomes |ũ− u∗|. Figure 2·1b shows that in order to beat our algorithm, the

baseline has to guess u∗ beforehand with error at most 1, which is hard. Therefore,

our algorithm prevails in most situations.
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To strengthen the intuition, let us fix u∗ = 100 and take a closer look at the

progression of predictions xt (Figure 2·1c). Similar to both baselines, our algorithm

approaches u∗ with exponentially growing speed at the beginning, which is a key benefit

of comparator adaptive algorithms over gradient descent (Orabona and Tommasi,

2017, Section 5). However, after overshooting, the prediction of our algorithm exhibits

a much smaller “dip”. This aligns with the intuition, as our algorithm allows higher

RegretT (0). In other words, compared to the baselines, our algorithm has a weaker

belief that the initialization is correct; instead, it believes more in the incoming

information. Such a property leads to advantages when the initialization is indeed far

from the optimum.

2.7 Summary

This chapter presents a framework that generates potential function candidates by

solving a PDE. It reduces the amount of guessing in the current workflow, thus

simplifying the discovery and analysis of more complicated potentials. To demonstrate

its power, we use this framework to design a concrete algorithm – it achieves the

optimal loss-regret tradeoff without any impractical doubling trick, and furthermore,

attains the optimal leading constant. Such properties lead to practical advantages

when a good initialization is not available.

Overall, the continuous-time perspective adopted in this chapter, in combination

with a series of recent works (Drenska and Kohn, 2020b; Harvey et al., 2020), could be

a powerful tool for adaptive online learning in general. Several interesting directions

are left open:

• In order to further improve practicality, can we use the new potential to achieve

gradient-adaptive (Cutkosky and Orabona, 2018; Cutkosky, 2019a; Mhammedi

and Koolen, 2020) bounds?
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• Can the PDE framework achieve adaptivity or tradeoffs in a broader range of

online learning problems? For example, with bandit feedback, delays, etc. The

problem with switching costs will be considered in the next Chapter.

• Is there a more principled way to handle the obtained PDEs, without enough

boundary conditions? Can we automate the discovery and verification of new

potentials?

2.8 Proofs

2.8.1 Generic betting results

Lemma 2.4

Proof of Lemma 2.4. We only prove the first part by induction. The proof of the

second part is similar, therefore omitted. Let us restate the backward recursion (2.5),

V (t, S) = min
x∈X

max
c∈C

[V (t+ 1, S + c)− ⟨c, x⟩] .

Starting from t = 0 and S = 0, let x1 be the outer minimizing argument. Then, for

all adversary policy a1 such that c1 = a1(x1), we have V (1, c1) = V (1, c1)− V (0, 0) ≤
⟨c1, x1⟩.

Now consider the following induction hypothesis: there exists T ∈ N+, initial bet

x1 and functions p∗2, . . . , p
∗
T such that for all a,

T∑
t=1

⟨ct, xt⟩ ≥ V

(
T,

T∑
t=1

ct

)
.

Plugging (t, S) = (T,
∑T

t=1 ct) into the backward recursion,

V

(
T,

T∑
t=1

ct

)
= min

xT+1∈X
max
cT+1∈C

[
V

(
T + 1,

T+1∑
t=1

ct

)
− ⟨cT+1, xT+1⟩

]
.

Given the value function V , there exists xT+1 only depending on T and
∑T

t=1 ct such
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that for all cT+1,

V

(
T,

T∑
t=1

ct

)
≥ V

(
T + 1,

T+1∑
t=1

ct

)
− ⟨cT+1, xT+1⟩ .

Define the policy p∗T+1 in this way, we have

T+1∑
t=1

⟨ct, xt⟩ ≥ V

(
T + 1,

T+1∑
t=1

ct

)
.

Lemma 2.5

Proof of Lemma 2.5. Starting from the LHS of (2.14),

LHS = V̄

(
t+ 1,

t+1∑
i=1

ci

)
− 1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]

+
1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]
− V̄

(
t,

t∑
i=1

ci

)

= V̄

(
t+ 1,

t+1∑
i=1

ci

)
− 1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]

+ ∇̄tV̄

(
t+ 1,

t∑
i=1

ci

)
+

1

2
∇̄SSV̄

(
t+ 1,

t∑
i=1

ci

)
.

The remaining task is to show

V̄

(
t+ 1,

t+1∑
i=1

ci

)
− 1

2

[
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+ V̄

(
t+ 1,

t∑
i=1

ci − 1

)]
≤ ct+1xt+1.

Plugging in the player’s bet xt+1 (2.12), it suffices to show that

V̄

(
t+ 1,

t+1∑
i=1

ci

)
≤ 1 + ct+1

2
V̄

(
t+ 1,

t∑
i=1

ci + 1

)
+

1− ct+1

2
V̄

(
t+ 1,

t∑
i=1

ci − 1

)
,

which follows from the convexity of V̄ . Equality is achieved when ct+1 ∈ {−1, 1}.

Lemma 2.6
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Proof of Lemma 2.6. Plugging in the definition of discrete derivative,

∇̄tV̄1/2(t, S)+∇̄SSV̄1/2(t, S)/2 =
1

2
V̄1/2(t, S+1)+

1

2
V̄1/2(t, S−1)−V̄1/2(t−1, S). (2.15)

Step 1: upper bound. For clarity, define a function f : R→ R as

f(z) = 2z

z∫
0

exp(x2)dx− exp(z2).

Then, using the definition of V̄1/2, it suffices to show that

f

(
− 1√

2

)
+ f

(
1√
2

)
≤ 0,

and for all t > 1,

f

(
S − 1√

2t

)
+ f

(
S + 1√

2t

)
≤ 2

√
1− 1

t
f

(
S√

2(t− 1)

)
.

The first inequality can be easily verified by computing the values of f(1/
√
2) and

f(−1/
√
2). As for the second inequality, we use an existing result (Harvey et al., 2020,

Lemma C.4): for all x ∈ R and z ∈ [0, 1),

f

(
x− z√

2

)
+ f

(
x+ z√

2

)
≤ 2
√
1− z2f

(
x√

2(1− z2)

)
.

Taking x = S/
√
t and z = 1/

√
t completes the proof.

Step 2: lower bound. From Taylor’s theorem,

V̄1/2(t, S + 1) = V̄1/2(t, S) +∇SV̄1/2(t, S)

+
1

2
∇SSV̄1/2(t, S) +

1

6
∇SSSV̄1/2(t, S) +

1

24
∇SSSSV̄1/2(t, S + a),

V̄1/2(t, S − 1) = V̄1/2(t, S)−∇SV̄1/2(t, S)

+
1

2
∇SSV̄1/2(t, S)−

1

6
∇SSSV̄1/2(t, S) +

1

24
∇SSSSV̄1/2(t, S − b),
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V̄1/2(t− 1, S) = V̄1/2(t, S)−∇tV̄1/2(t, S) +
1

2
∇ttV̄1/2(t− c, S),

where a, b, c ∈ [0, 1]. Plugging these into (2.15) and using the condition ∇tV̄1/2 =

−∇SSV̄1/2/2 (since V̄1/2 is a solution of the backward heat equation), we have

∇̄tV̄1/2(t, S) + ∇̄SSV̄1/2(t, S)/2

=
1

48
∇SSSSV̄1/2(t, S + a) +

1

48
∇SSSSV̄1/2(t, S − b)−

1

2
∇ttV̄1/2(t− c, S).

It can be verified that ∇SSSSV̄1/2(t, S) ≥ 0 for all (t, S), and

∇ttV̄1/2(t, S) =
C

4
t−3/2 exp

(
S2

2t

)(
S2

t
+ 1

)
.

Therefore,

∇̄tV̄1/2(t, S) + ∇̄SSV̄1/2(t, S)/2 ≥ −
C

8
max
c∈[0,1]

(t− c)−3/2 exp

(
S2

2(t− c)

)(
S2

t− c
+ 1

)
= −C

8
(t− 1)−3/2 exp

(
S2

2(t− 1)

)(
S2

t− 1
+ 1

)
.

2.8.2 Regret upper bound

Theorem 2.1

Proof of Theorem 2.1. The proof follows from combining Lemma 2.3, Lemma 2.7 and

Lemma 2.1.

Specifically, let us first guarantee the performance of the yt sequence. For clarity,

given any T , define a one dimensional function fT as fT (S) = V̄1/2(T, S). Combining

Lemma 2.3 and Lemma 2.7, for any T ∈ N+ and w ∈ R we have

T∑
t=1

⟨gt, zt⟩ yt −
T∑
t=1

⟨gt, zt⟩w ≤ f ∗
T (w).

Then, due to Lemma 2.1, for all T ∈ N+ and u ∈ Rd Algorithm 2.6 guarantees

RegretT (u) ≤ f ∗
T (∥u∥) + ∥u∥

√
2T .
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The remaining task is to bound the Fenchel conjugate f ∗
T . For all w ∈ R,

f ∗
T (w) = sup

S∈R
Sw − fT (S).

Let S∗ be the maximizing argument. Without loss of generality (due to symmetry),

assume w ≥ 0 and therefore S∗ ≥ 0. We have

w = ∇fT (S∗) =
√
2C

S∗/
√
2T∫

0

exp(z2)dz.

For any x ≥ 0, consider the function f(x) =
∫ x

0
exp(z2)dz. It is lower bounded by

g(x) = exp(x2 − x)− 1, as f(0) = g(0), and

f ′(x) = exp(x2) ≥ exp(x2 − x)(2x− 1) = g′(x),

due to the inequality exp(x) ≥ 2x− 1. Therefore,

w√
2C

=

S∗/
√
2T∫

0

exp(z2)dz ≥ exp

[(
S∗
√
2T
− 1

2

)2

− 1

4

]
− 1,

S∗ ≤
√
2T

[√
1

4
+ log

(
1 +

w√
2C

)
+

1

2

]
.

Now consider f ∗
T (w). Since fT (S

∗) ≥ −C
√
T and

√
x+ (1/4) ≤

√
x+ (1/2),

f ∗
T (w) = S∗w − fT (S∗) ≤ S∗w + C

√
T ≤ C

√
T + w

√
2T

[√
log

(
1 +

w√
2C

)
+ 1

]
.

Combining everything completes the proof.

2.8.3 Regret lower bound

Lemma 2.8

Proof of Lemma 2.8. Let us first generalize the unconstrained coin-betting game to

allow random adversary on the coin space {−1, 1}. That is, based on past player bets

x1, . . . , xt, the adversary decides a distribution on {−1, 1} and samples ct from this
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distribution.

Now, consider the setting where the player applies any policy p that guarantees

WealthT ≥ −C
√
T , and the adversary picks coin outcomes according to a Rademacher

distribution: regardless of x1, . . . , xt, the coin ct equals −1 and 1 with probability 1/2

respectively. Then for all T ∈ N+, let k =
√
2T log λ.

0 = E

[
T∑
t=1

ctxt

]

= E

[
T∑
t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
P

[∣∣∣∣∣
T∑
t=1

ct

∣∣∣∣∣ ≥ k

]

+ E

[
T∑
t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ < k

]
P

[∣∣∣∣∣
T∑
t=1

ct

∣∣∣∣∣ < k

]

≥ E

[
T∑
t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
P

[∣∣∣∣∣
T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
− C
√
T .

Applying Lemma 2.9, using λ ≥ exp[(
√
2 + 1)/2] and T ≥ 8πλ2 log λ,

P

[∣∣∣∣∣
T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
≥
√

2

π

√
2 log λ

1 + 2 log λ
λ−1 − 1√

T

≥ 1√
2π log λ

λ−1 − 1√
T
≥ 1

2
√
2π log λ

λ−1.

E

[
T∑
t=1

ctxt

∣∣∣∣
∣∣∣∣∣

T∑
t=1

ct

∣∣∣∣∣ ≥ k

]
≤ C

√
T

P
[∣∣∣∑T

t=1 ct

∣∣∣ ≥ k
] ≤ 2

√
2πλ

√
log λ · C

√
T .

Therefore, for any player policy p there exists an adversary policy a which induces

|
∑T

t=1 ct| ≥
√
2T log λ and WealthT ≤ 2

√
2πλ
√
log λ · C

√
T .

The above proof critically relies on a tail lower bound for random walks, which is

presented in Lemma 2.9. Compared to similar results (Mcmahan and Streeter, 2012;

Orabona, 2013), it has the tight exponent (1/2) in the exponential function.

Lemma 2.9. For all T ∈ N+, let z1, . . . , zT be i.i.d. Rademacher random variables.
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Then for any k > 0,

P

[∣∣∣∣∣
T∑
t=1

zt

∣∣∣∣∣ ≥ k

]
≥
√

2

π

k
√
T

k2 + T
exp

(
− k

2

2T

)
− 1√

T
.

Proof of Lemma 2.9. Due to the Central Limit Theorem, (
∑T

t=1 zt)/
√
T converges in

distribution to standard normal N (0, 1). Concretely, the nonasymptotic convergence

rate can be characterized via the Berry-Esseen Theorem (Korolev and Shevtsova,

2012): Let FT (x) be the CDF of (
∑T

t=1 zt)/
√
T and Φ(x) be the standard normal

CDF, then,

sup
x∈R
|FT (x)− Φ(x)| ≤ 1

2
√
T
.

For the tail probability of standard normal distribution, there is a standard lower

bound (Gordon, 1941) through the Mills ratio, which can be verified via a derivative

argument: For all x > 0,

1− Φ(x) ≥ 1√
2π

1

x+ x−1
exp

(
−x

2

2

)
.

Therefore,

P

[∣∣∣∣∣
T∑
t=1

zt

∣∣∣∣∣ ≥ k

]
= 2 ·

[
1− FT (k/

√
T )
]

≥ 2 ·
[
1− Φ(k/

√
T )− 1

2
√
T

]
≥
√

2

π

k
√
T

k2 + T
exp

(
− k

2

2T

)
− 1√

T
.

Theorem 2.2

Proof of Theorem 2.2. We start by proving the regret lower bound for one dimensional

unconstrained OLO. Extension to the general d-dimensional problem will be considered

later.

For the one dimensional problem, we first invoke a particular version of Lemma 2.8

on unconstrained coin-betting. Specifically, for any constants η ∈ (0, 1) and u ∈ R/{0}
we define λ in Lemma 2.8 as

λ =
η |u|
2
√
πC

.
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For convenience of notation we also define

T0 =
2η2 |u|2

C2
log

(
η |u|
2
√
πC

)
.

Then, Lemma 2.8 yields the following result: For all η ∈ (0, 1), |u| ≥ 2
√
π exp[(

√
2 +

1)/2]η−1C, T ≥ T0 and any coin-betting player policy p that guarantees WealthT ≥
−C
√
T , there exists a coin-betting adversary policy a such that in the game induced

by (p,a),

1. |
∑T

t=1 ct| ≥
√
2T log λ;

2. WealthT ≤ η |u|
√
2T log λ.

Using Algorithm 2.3, we can equivalently convert OLO to coin-betting by letting

ct = −gt. Then, the above result immediately translates to the following statement on

one dimensional unconstrained OLO: For all η ∈ (0, 1), |u| ≥ 2
√
π exp[(

√
2+1)/2]η−1C,

T ≥ T0 and any unconstrained OLO algorithm A that guarantees the cumulative

loss bound
∑T

t=1 gtxt ≤ C
√
T , there exists an OLO adversary Env such that in the

induced game,

1. |
∑T

t=1 gt| ≥
√
2T log λ;

2. −
∑T

t=1 gtxt ≤ η |u|
√
2T log λ.

Let us consider the regret of A in this setting with respect to comparators u and

−u. Using the above result,

max {RegretT (Env, u),RegretT (Env,−u)} =
T∑
t=1

gtxt +max

{
−

T∑
t=1

gtu,
T∑
t=1

gtu

}

=
T∑
t=1

gtxt +

∣∣∣∣∣
T∑
t=1

gt

∣∣∣∣∣ |u|
≥ (1− η) |u|

√
2T log λ

= (1− η) |u|

√
2T log

η |u|
2
√
πC

.

Thus we have proved the desirable result when d = 1.

Extending this result to d-dimension follows from a standard technique: consider

environments Env whose loss vectors gt are only nonzero in one coordinate. Let
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gt = [gt,1, . . . , gt,d], and assume gt,2 = . . . = gt,d = 0. Then, for any OLO algorithm

that operates in this environment and competes against u = [u1, 0, . . . , 0],

RegretT (Env, u) =
T∑
t=1

⟨gt, xt⟩ −
T∑
t=1

⟨gt, u⟩ =
T∑
t=1

gt,1xt,1 −
T∑
t=1

gt,1u1,

∥u∥ = |u1|, and the cumulative loss satisfies
∑T

t=1 ⟨gt, xt⟩ =
∑T

t=1 gt,1xt,1. Therefore,

any d-dimensional algorithm that guarantees RegretT (0) ≤ C
√
T is translated into a

one dimensional algorithm with the same guarantee, and our one dimensional regret

lower bound can be applied.

Theorem 2.3

Proof of Theorem 2.3. Let us first consider the upper bound. Plugging in Theorem 2.1,

lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,Env

Regret
A1/2

T (Env, u)

∥u∥
√
T log ∥u∥

≤ lim sup
U→∞

lim sup
T→∞

sup
∥u∥=U,Env

(
C + 2

√
2∥u∥

∥u∥
√

log ∥u∥
+

√
2 log

(
1 +

∥u∥√
2C

)
log−1 ∥u∥

)

≤ lim
U→∞

C + 2
√
2U

U
√
logU

+ lim
U→∞

√
2 log

(
1 +

U√
2C

)
log−1 U =

√
2

As for the lower bound, we use Theorem 2.2. We first fix any C and any A satisfying

the condition in the theorem to be proved. For all η ∈ (0, 1), with U ≥ 12η−1C and

T ≥ 2η2U2C−2 log(ηUC−1),

sup
∥u∥=U,Env

RegretAT (Env, u)

∥u∥
√
T log ∥u∥

≥ (1− η)

√
2 log

ηU

2
√
πC

log−1 U

= (1− η)

√
2

(
1 +

log η

logU
− log(2

√
πC)

logU

)
.

Taking lim inf on both sides, for all η ∈ (0, 1),

lim inf
U→∞

lim inf
T→∞

sup
∥u∥=U,Env

RegretAT (Env, u)

∥u∥
√
T log ∥u∥

≥
√
2(1− η).

Rewriting this statement, we have: for all ε ≥ 0 and η ∈ (0, 1), there exists U0
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depending on ε and η such that for all U ≥ U0,

lim inf
T→∞

sup
∥u∥=U,Env

RegretAT (Env, u)

∥u∥
√
T log ∥u∥

≥
√
2−
√
2η − ε.

Finally, using the definition of lim inf completes the proof.

Theorem 2.5

Proof of Theorem 2.5. For convenience, let us define the function

hT (S) = V̄1/2 (T, S) +
3C

8
exp

(
S2

2T

)(
S2

T
+ 1

)
+ 2C.

Directly applying Lemma 2.10 yields the following result. For all T ∈ N+ and

S ∈ [−T, T ], there exists g1, . . . , gT ∈ [−1, 1] such that (i) −
∑T

t=1 gt = S; and

(ii) Algorithm 2.7 constructed from V̄1/2 satisfies
∑T

t=1 gtxt ≥ −hT (S) against loss

gradients g1:T .

Define a variable u∗ as

u∗ = h′T (S) =
√
2C

S/
√
2T∫

0

exp(x2)dx+
3CS

8T
exp

(
S2

2T

)(
S2

T
+ 3

)
.

Since S is arbitrary within the interval [−T, T ], u∗ can take any value within [−U,U ],
where U = (3/8)C(T + 3) exp(T/2). Due to a standard result from convex analysis

(Rockafellar, 2015, Theorem 23.5), hT (S) + h∗T (u
∗) = Su∗. Therefore,

RegretT (u
∗) =

T∑
t=1

gtxt −
T∑
t=1

gtu
∗ ≥ −hT (S) + Su∗ = h∗T (u

∗).

The remaining task is to lower bound h∗T (·).
Without loss of generality, assume u ≥ 0. Let us define a variable S̃ through the

equation

u =
√
2C

S̃/
√
2T∫

0

exp(z2)dz.



62

Then, using the proof of Theorem 2.1,

h∗T (u) = sup
S∈R

Su− hT (S) ≥ S̃u− hT (S̃) = f ∗
T (u)−

3C

8
exp

(
S̃2

2T

)(
S̃2

T
+ 1

)
− 2C,

and

S̃ ≤
√
2T

[√
log

(
1 +

u√
2C

)
+ 1

]
.

Combining the above completes the proof.

The above proof relies on the following algorithm-dependent wealth upper bound

for coin-betting.

Lemma 2.10. Consider unconstrained coin-betting. For all T ∈ N+ and S ∈ [−T, T ],
we can construct c1 ∈ C and c2, . . . , cT ∈ {−1, 1} such that

1.
∑T

t=1 ct = S;

2. If the player applies Algorithm 2.5 constructed from V̄1/2 and the adversary plays

the aforementioned coin sequence c1:T , then

WealthT ≤ V̄1/2 (T, S) +
3C

8
exp

(
S2

2T

)(
S2

T
+ 1

)
+ 2C.

Proof of Lemma 2.10. We first construct the coin sequence. For all S ∈ [−T, T ], there
exists an integer S̃ such that |S̃| ≤ T , (|S̃| + 1) mod 2 = T mod 2 and |S − S̃| ≤ 1.

We define the coins using three phases.

1. c1 = S − S̃;

2. For all 1 < t ≤ T − |S̃|, let ct = sign(c1) · (−1)t−1;

3. If S̃ ̸= 0, then for all t such that T − |S̃| < t ≤ T , let ct = S̃/|S̃|.

Based on this coin sequence, there are three immediate observations:

1. The sum of coins from the second phase is 0, and the sum of coins from the

third phase is S̃; therefore,
∑T

t=1 ct = S.

2. If τ ≤ T − |S̃| then |
∑τ

t=1 ct| ≤ 1.
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3. If T − |S̃| < τ ≤ T then |
∑τ

t=1 ct| = |S| − T + τ .

Next, we derive the wealth upper bound induced by such a coin sequence and

the player policy (Algorithm 2.5). Starting from the first round, x1 = 0, therefore

Wealth1 = 0. Wealth1 = V̄1/2(1, c1)−V̄1/2(1, c1) ≤ V̄1/2(1, c1)−V̄1/2(1, 0) = V̄1/2(1, c1)+

C. Considering the rest of the rounds, there are two cases: (i) |S| ≤
√
T ; (ii) |S| >

√
T .

Case (i) In this case we first show that for all integer τ in [1 : T ], |
∑τ

t=1 ct| ≤
√
τ .

Due to the second observation above, this condition holds for all τ ≤ T − |S̃|, and
we only need to focus on T − |S̃| < τ ≤ T (the third phase) where |

∑τ
t=1 ct| =

|S| − T + τ ≤
√
T − T + τ ; since T −

√
T ≥ τ −

√
τ , we further have |

∑τ
t=1 ct| ≤

√
τ .

Based on this result, telescoping Lemma 2.5 (notice that equality is achieved) and

using Lemma 2.6, we have

WealthT ≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

C

8

T−1∑
t=1

t−3/2 exp

(
(
∑t

i=1 ci)
2

2t

)(
(
∑t

i=1 ci)
2

t
+ 1

)

≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

√
eC

4

T−1∑
t=1

t−3/2 ≤ V̄

(
T,

T∑
t=1

ct

)
+

(
3
√
e

4
+ 1

)
C.

Case (ii) In this case we show that for all integer τ in [1 : T ], |
∑τ

t=1 ct|/
√
τ ≤

|
∑T

t=1 ct|/
√
T . Similar to Case (i), we consider τ ≤ T − |S̃| and T − |S̃| < τ ≤ T

separately. When τ ≤ T − |S̃|, we have |
∑τ

t=1 ct|/
√
τ ≤ 1 ≤ |S|/

√
T = |

∑T
t=1 ct|/

√
T .

On the other hand, when T − |S̃| < τ ≤ T it suffices to show that

|S| − T + τ√
τ

≤ |S|√
T
.

The LHS monotonically increases with respect to τ , and when τ = T the inequality

holds with equality. In summary, the required condition |
∑τ

t=1 ct|/
√
τ ≤ |

∑T
t=1 ct|/

√
T

holds for all τ ∈ [1 : T ].

Based on this result, telescoping Lemma 2.5 and using Lemma 2.6, we have

WealthT ≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

C

8
exp

(
(
∑T

i=1 ci)
2

2T

)(
(
∑T

i=1 ci)
2

T
+ 1

)
T−1∑
t=1

t−3/2

≤ V̄1/2

(
T,

T∑
t=1

ct

)
+ C +

3C

8
exp

(
(
∑T

i=1 ci)
2

2T

)(
(
∑T

i=1 ci)
2

T
+ 1

)
.
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Combining Case (i) and Case (ii) completes the proof.
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Chapter 3

Comparator adaptivity with Switching

Costs

This chapter is based on (Zhang et al., 2022a,c), and naturally extends the PDE

framework from the previous chapter. There are two goals:

• We aim to achieve comparator adaptivity in a variant of the standard OCO

setting, with switching costs. Such a setting finds plenty of applications in

downstream sequential decision making tasks with states and dynamics (Agarwal

et al., 2019). From the perspective of online learning, the existence of switching

costs penalizes the typical optimism in adaptive algorithms, which requires a

delicate tradeoff in algorithm design.

• On the methodology, we aim to show that the idea of continuous time scaling

leads to not only better quantitative rates (as shown in Chapter 2), but also clear

intuition on the inherent connections between different online learning problems.

This allows naturally transferring algorithmic insights from the generic OCO

problem to its variants.

Section 3.1 motivates the problem and summarizes our contributions. Section 3.2

surveys existing results. Section 3.3 presents the first comparator adaptive algorithm

for OCO with switching costs, due to (Zhang et al., 2022a), which does not require the

continuous time analysis. Section 3.4 improves this result using a streamlined algorithm

discovered in continuous time; this is due to (Zhang et al., 2022c). Section 3.5 extends
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these results on OCO to the expert problem, also with switching costs. Experiments

are presented in Section 3.6. Section 3.7 concludes this chapter and discusses future

directions. All the proofs are deferred to Section 3.8.

Setting We consider OCO with switching costs, which is a variant of the standard

OCO problem studied in the previous chapter.

Definition 7 (OCO with switching costs). OCO with switching costs is the following

variant of OCO: after the t-th round, besides suffering the instantaneous loss lt(xt),

the learning agent also suffers a switching cost λ ∥xt − xt−1∥p, where the weight λ and

the norm ∥·∥p are known to the agent at the beginning. Without loss of generality,

x0 = 0.

The goal of the agent is still bounding the static regret with respect to fixed com-

parators selected in hindsight. With switching costs, such an objective is called the

augmented regret:

T∑
t=1

lt(xt) + λ
T−1∑
t=1

∥xt+1 − xt∥p −
T∑
t=1

lt(u).

It is immediately clear that the standard reduction from OCO to OLO is still

applicable. Furthermore, due to the polar decomposition trick (surveyed in Section 2.2),

most of the results will be developed for the 1D setting, where the augmented regret

(for the reduced OLO problem) simplifies to

RegretλT (Env, u) :=
T∑
t=1

gt(xt − u) + λ

T−1∑
t=1

|xt+1 − xt| .

Taking the supremum over the environment, we will primarily bound

RegretλT (u) := sup
Env

(
T∑
t=1

gt(xt − u) + λ
T−1∑
t=1

|xt+1 − xt|

)
. (3.1)

As for the rest of the problem setting, the time horizon T is unknown, and the

loss functions are assumed to be G-Lipschitz (i.e., Assumption 1) with respect to
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∥·∥q, where ∥·∥q is the dual norm of ∥·∥p. Specifically, p = 1 and 2 will be considered.

Unlike the previous chapter, we do not assume G = 1 in order to make it easier to see

the “unit” throughout the analysis. Also, same as the previous chapter, we do not

incorporate any prior ũ, which means that algorithms are initialized at the origin, and

the comparator complexity is characterized by ∥u∥p.

Our goal is to achieve a comparator adaptive (Type 1 in Section 1.4) augmented

regret bound: omitting the dependence on G, λ and p,

T∑
t=1

lt(xt) + λ
T−1∑
t=1

∥xt+1 − xt∥p −
T∑
t=1

lt(u) = Õ(∥u∥p
√
T ).

Section 3.5 extends our results on OCO to another classical online learning problem

called Learning with Expert Advice (LEA). The setting will be introduced there for

clarity.

Notation This chapter involves a potential-based analysis similar to the previous

chapter, but slightly more involved. Let us further define discrete derivatives to

simplify the writing.

∇̄tV (t, S) := V (t, S)− V (t− 1, S),

∇̄SV (t, S) :=
1

2
[V (t, S + 1)− V (t, S − 1)] , (3.2)

∇̄SSV (t, S) := V (t, S + 1) + V (t, S − 1)− 2V (t, S).

Conventional derivatives are still denoted without the bar, e.g., ∇tV (t, S) and

∇SV (t, S).
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3.1 Motivation and contribution

Online learning with switching costs is a classical research topic. Practically, switching

costs are useful whenever the smooth operation of a sequential decision system is

favored, such as in network routing, control of electrical grid, portfolio management

with transaction costs, etc. Recently they also show up as submodules in online

learning problems with long term effects, such as nonstochastic control (Agarwal et al.,

2019). The rationale is that, if the negative effect of our decisions could remain in a

state and propagate to the future, then we should be more conservative, thus change

our decisions slowly between consecutive rounds.

It is well known that OGD can incorporate switching costs by simply scaling its

learning rate (Anava et al., 2015a). However, it is much harder to extend comparator

adaptive algorithms accordingly. Just like all kinds of adaptive algorithms (Duchi

et al., 2011; Daniely et al., 2015), the key idea of comparator adaptivity is to quickly

respond to the incoming information and hedge aggressively. Switching costs, on

the other hand, encourage the agent to stay still. Therefore, achieving comparator

adaptivity with switching costs requires a delicate balance between these two opposite

considerations. A more quantitative discussion of this challenge will be provided in

Section 3.3.

Similar tradeoffs between adaptivity and switching costs have led to intriguing

results in the past. For example, Gofer (2014) showed that the gradient variance

adaptivity (Type 2 in Section 1.4) well-studied in the switching-free setting is impossible

with normed switching costs, thus establishing a clear separation caused by the latter.

Daniely and Mansour (2019) showed that a common analytical technique for switching

costs is incompatible to the local adaptivity (Type 4 in Section 1.4). In this chapter,

we investigate whether comparator adaptivity can be extended to this setting, which

was unclear a priori.
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Result and contribution We develop two comparator adaptive algorithms for

OCO with switching costs. Both of them are concretely developed for the 1D setting,

i.e., bounding (3.1). The extension to higher dimensions is fairly standard (Orabona,

2019, Chapter 9), which will be discussed in Section 3.4.4.

• The first algorithm was proposed in (Zhang et al., 2022a), which is based on the

traditional, betting-fraction-type analysis (Orabona and Pál, 2016). Given any

hyperparameter C > 0, it guarantees for all T ∈ N+ and u ∈ R,1

RegretλT (u) ≤ (G+ λ) ·
[
C + |u|O

(√
T log(|u|C−1T )

)]
.

Despite being the first to achieve comparator adaptivity with switching costs,

it does not match the optimal logarithmic factors in the switching-free setting

(compare it to Theorem 2.1), thus fails to achieve Pareto optimality.

• The second algorithm was proposed in (Zhang et al., 2022c), which we will

emphasize in this chapter. Still with a hyperparameter C > 0, the 1D algorithm

guarantees

RegretλT (u) ≤
√

(4λG+ 2G2)T

[
C + |u|

(√
4 log

(
1 +
|u|
C

)
+ 2

)]
,

which improves the first algorithm by simultaneously achieving several additional

forms of optimality.

Notably, the improvement is due to a novel dual space scaling strategy. This

is actually not guessed, but systematically discovered by a continuous-time

analysis similar to the previous chapter. In the continuous-time limit, it becomes

1Although formally this comparator adaptive result (Theorem 3.1) is proved on a bounded domain
[0, R̄], it is based on an unconstrained algorithm and the standard technique to impose constraints
(Algorithm 3.3). It is not hard to extract the underlying unconstrained algorithm, which satisfies this
statement. Furthermore, compared to Theorem 3.1, here we set the regularization weight γ = 0, and
the confidence parameter is denoted by C rather than ε for easier comparison with other comparator
adaptive algorithms.
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evident what kinds of algorithmic structures from the switching-free setting are

transferable to the setting with switching costs. Indeed, revealing generalizable

knowledge is a key benefit of the continuous-time analysis, which was not

demonstrated in the previous chapter. As an added bonus, both this algorithm

and its analysis are considerably simpler than the first algorithm we propose.

Section 3.5 extends these results to the expert problem with switching costs,

achieving the first comparator adaptive regret bound there. Even without switching

costs, we improve existing comparator adaptive bounds (for the expert problem) by a

better divergence characterization.

Complementing these theoretical results, we test our two OCO algorithms in

a portfolio management task with transaction costs, with both synthetic and real

datasets.

3.2 Related work

For the background of comparator adaptive online learning, the reader is referred to

Section 1.4 and 2.2. Here we focus on surveying prior works related to switching costs.

Switching cost Switching costs in online decision making have been studied from

many different angles. For example, besides online learning, the online algorithm

community has investigated settings like smoothed online optimization (Chen et al.,

2018; Goel et al., 2019; Li et al., 2020) and convex body chasing (Bubeck et al., 2019;

Sellke, 2020), where the loss function lt is observed before the agent picks the prediction

xt. There, the switching cost is the key consideration that prevents the trivial strategy

xt ∈ argminx lt(x). As for online learning, an additional complication is that xt (e.g.,

the investment portfolio) should be selected without knowing lt (e.g., tomorrow’s stock

price).
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Even within online learning, there are several ways to model switching costs. In

cases like network routing, every switch means changing the packet route, which

can be costly. Therefore, one needs a lazy agent whose amount of switches (or its

expectation) (Kalai and Vempala, 2005; Geulen et al., 2010; Altschuler and Talwar,

2018; Chen et al., 2020; Sherman and Koren, 2021) is as low as possible – a good

modeling candidate is 1[xt ̸= xt+1]. Alternatively, one could take a smooth view

(Andrew et al., 2013; Bhaskara et al., 2021; Wang et al., 2021; Zhang et al., 2021)

where the agent can perform as many switches as it wishes, as long as the cumulative

distance of switching is low – in this view, switching costs can be a norm ∥xt − xt+1∥

or its smoothed variant ∥xt − xt+1∥2. We will specifically consider switching costs

modeled by the L1 and L2 norms.

Despite these results on minimax online learning, existing works on the combination

of adaptivity and switching costs are quite sparse. As one should carefully trade

off these two opposite requirements, there have been interesting impossibility results

(Gofer, 2014; Daniely and Mansour, 2019), highlighted in the previous section. Adding

to this topic but in an opposite direction, we will show that comparator adaptivity

can indeed by achieved.

Relation to downstream problems More generally, incorporating switching costs

amounts to considering a history-dependent adversary: it can pick loss functions

that depend not only on the instantaneous prediction xt, but also on the previous

prediction xt−1. One could further generalize this setting to online learning with

memory (Cesa-Bianchi et al., 2013; Anava et al., 2015a), where the loss depends on

a fixed-length prediction history, and finally to dynamical systems (Agarwal et al.,

2019; Simchowitz et al., 2020; Simchowitz, 2020), where the entire history matters.

In fact, a common procedure in the field of nonstochastic control (Agarwal et al.,

2019) is to bound the risk in the future by a properly scaled switching cost. Achieving
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comparator adaptivity with switching costs can benefit these important downstream

problems as well; for example, by making algorithms “easy to combine” (Cutkosky,

2019b, 2020; Zhang et al., 2022a).

3.3 The first solution

Now we are ready to dive into the details. Before presenting any algorithm, we first

discuss the challenge of our task from a more quantitative perspective. In some sense,

it justifies the complications in our algorithms and their analysis.

3.3.1 Quantitative challenge

Consider the 1D worst case augmented regret defined in (3.1), copied below.

RegretλT (u) := sup
Env

(
T∑
t=1

gt(xt − u) + λ
T−1∑
t=1

|xt+1 − xt|

)
.

Neglecting the dependence on G, our goal is to show a comparator adaptive bound

Õ
(
|u|
√
λT
)
.

For minimax algorithms like OGD on a bounded domain, one can use scaled

adaptive learning rates ηt ∝ 1/
√
λt to ensure that both sums on the RHS are O

(√
λT
)

regardless of the environment, thus obtaining a minimax optimal O
(√

λT
)
augmented

regret bound. However, such a divide-and-conquer approach does not apply to

comparator adaptive algorithms, as one cannot separately show the desirable bound on

the two sums. To see this, suppose one could guarantee the second sum alone is at most

1+|u|O
(√

T log(|u|T )
)
, which is the form of the standard comparator adaptive regret

bound without switching costs (see Chapter 2); here we only focus on the dependence on

|u| and T . Since this cumulative switching cost is an algorithmic quantity independent

of the comparator, we can take infimum with respect to u and obtain a “budget” of 1

for this sum. Following this argument, |xT | ≤ |x1|+
∑T−1

t=1 |xt − xt+1| = O(1). That
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is, the algorithm should only predict around the origin, which clearly leads to large

regret with respect to far-away comparators, under certain loss sequences.

The challenge can be motivated in another way. As shown in (Orabona, 2019,

Figure 9.1), the one-step switching cost |xt − xt+1| of comparator adaptive algorithms

can grow exponentially with respect to t, whereas such a quantity is uniformly bounded

in OGD. In fact, the exponential growth is the key mechanism for comparator adaptive

algorithms to cover an unconstrained domain fast enough (thus improving minimax

algorithms). This is however problematic when switching is also penalized, as one can

no longer control the switching cost by uniformly scaling |xt − xt+1|.

3.3.2 Algorithm and bound

Addressing the above challenge, our first contribution is Algorithm 3.1, which is

the first comparator adaptive algorithm for OLO with switching costs. Here we

still consider the 1D setting. Its higher dimensional extension will be discussed in

Section 3.4.4, similar to the standard techniques from (Orabona, 2019, Chapter 9).

Algorithm 3.1 needs three inputs.

• The confidence hyperparameter ε, which serves the same purpose as the hyper-

parameter C in Chapter 2.

• The regularization weight γ, which is needed for the extension to Rd with L2

norm switching costs. For interpretability (and easier comparison with our

second algorithm), one can always let γ = 0.

• A bounded domain V1d = [0, R̄]. This leads to a cumulative switching cost

bound (the second part of Theorem 3.1), which is critical for further constructing

locally adaptive algorithms (Type 4 in Section 1.4) with switching costs.2 The

2This is beyond the scope of this dissertation. The reader is referred to (Zhang et al., 2022a) for
this construction, including its application to the tracking control of linear systems.
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Algorithm 3.1 Our first algorithm: 1D comparator adaptive OLO with switching
costs.

Require: Hyperparameters γ ≥ 0 and ε > 0; a 1D domain V1d = [0, R̄].
1: Initialize internal variables as Wealth0 = ε, and β1, x1, x̃1 = 0. Define C =
G+ λ+ γ.

2: for t = 1, 2, . . . do
3: Make a prediction xt, observe a loss gradient gt. Define the surrogate loss g̃t as

g̃t =

{
gt, if gtx̃t ≥ gtxt,

0, otherwise.

4: Let β̂t+1 = −
∑t

i=1 g̃i/(2C
2t). Define Bt+1 = [0, 1/(C

√
2t)] and let βt+1 =

ΠBt+1(β̂t+1).
5: Assign Wealtht as the solution to the following equation (uniqueness shown in

Lemma 3.1),

Wealtht = (1− g̃tβt−γβt/
√
t)Wealtht−1−λ|βtWealtht−1−βt+1Wealtht|. (3.3)

6: Let x̃t+1 = βt+1Wealtht and xt+1 = ΠV1d
(x̃t+1).

7: end for

comparator adaptive regret bound we care about in this chapter (the first

part of Theorem 3.1) does not rely on the domain being bounded – it is fairly

straightforward to extract an unconstrained algorithm from Algorithm 3.1, with

a comparator adaptive regret bound on X = R.

Essentially, Algorithm 3.1 is based on the betting fraction framework from (Orabona

and Pál, 2016), but with substantial modifications. To get the gist of this algorithm,

let us briefly ignore the surrogate loss g̃t from Line 3 and the projection of x̃t+1 from

Line 6 (i.e., assume R̄ =∞). With gt = g̃t and xt+1 = x̃t+1, Algorithm 3.1 becomes an

OLO algorithm on R+ with predictions recommended by the following betting scheme:

A bettor has money Wealtht in the t-th round. After choosing a betting fraction

βt+1, he bets money xt+1 = βt+1Wealtht on the next loss gradient gt+1. The favorable

outcome is gt+1xt+1 being negative which means the OLO algorithm suffers negative

loss. Therefore, after observing gt+1, the bettor treats −gt+1xt+1 as the money he
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gains and updates his wealth accordingly. Since large switching is also undesirable, the

bettor further loses money proportional to the change of his betting amount; this is an

important and novel step in our approach. Using this procedure, regret minimization

is converted to wealth maximization. By choosing the betting fraction βt properly,

one can obtain a controlled augmented regret.

Rigorously, we first prove that the wealth update step in Algorithm 3.1 is well-posed.

Lemma 3.1. For all t ≥ 1, Equation (3.3) has a unique solution and the solution is

positive.

Then, the formal guarantee of Algorithm 3.1 is the following. The proof, including

several auxiliary lemmas, are deferred to Section 3.8. Without loss of generality, let

xT+1 = 0.

Theorem 3.1. For all γ ≥ 0 and 0 < ε ≤ GR̄, applying Algorithm 3.1 yields the

following guarantee.

1. For all T ∈ N+ and u ∈ V1d, with the constant C = G+ λ+ γ,

T∑
t=1

(
gtxt − gtu+ λ |xt − xt+1|+

γ√
t
|xt|
)
≤

ε+ uC
√
2T

(
3

2
+ log

√
2uCT 5/2

ε

)
.

2. For all a ≤ b,
∑b

t=a |xt − xt+1| ≤ 48R̄
√
b− a+ 1.

The highlights of Theorem 3.1 are summarized as follows.

1. Part 1 is the first comparator adaptive bound for OLO with switching costs: the

augmented regret grows almost linearly in |u| which is the optimal rate up to

logarithmic factors (see Chapter 2). In other words, without knowing the optimal

comparator u∗ in advance, Algorithm 3.1 automatically adapts to it, and the

performance bound almost matches the optimally-tuned OGD whose learning
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rate depends on u∗. Note that the latter is a hypothetical (unimplementable)

baseline, since the optimal comparator u∗ in hindsight is unknown before all the

losses are revealed. Nonetheless, our algorithm is still able to (nearly) match it

using an implementable procedure.

Furthermore, Part 1 does not need a bounded domain; the same bound holds

even with R̄ = ∞, making Algorithm 3.1 an appealing approach for general

unconstrained settings as well.

2. As for Part 2, we bound the switching costs alone over any time interval, which

is technically nontrivial. Our surrogate loss g̃t (Line 3) is due to an existing

black-box reduction from unconstrained OLO to constrained OLO (Section 2.3).

However, the proof of Part 2 requires a non-black-box use of this procedure: we

investigate how using the surrogate loss g̃t instead of the true loss gt changes

the growth rate of Wealtht, an internal quantity of the unconstrained OLO

algorithm. This is the first analysis that takes such a perspective, and the

techniques could be of separate interest.

Comparing Part 1 to the comparator adaptive regret bounds for the switching-free

setting (surveyed in Section 2.2), one could also see a limitation of this result: the

logarithmic factors are not optimal. With a cumulative loss budget ε = 1, the optimal

comparator adaptive regret bound is O(|u|
√
T log(|u|T )), whereas Part 1 above is

O(|u|
√
T log(|u|T )). That is, Part 1 does not achieve the Pareto optimal frontier

of the loss-regret tradeoff. To close this gap, we develop another algorithm with

streamlined intuition from the continuous time.

3.4 Better algorithm from discretization

Same as the first algorithm, we consider the 1D setting, with the goal of bounding

the worst case augmented regret (3.1). The difference is that, instead of using betting
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fractions, we now follow the potential framework explored by a parallel line of works

(McMahan and Orabona, 2014; Foster et al., 2018; Mhammedi and Koolen, 2020;

Zhang et al., 2022b), similar to Chapter 2.

3.4.1 Switching-adjusted potential

To recap, potential algorithms are defined by a potential function V (t, S), where t

represents the time index, and S represents a “sufficient statistic” that summarizes

the history. In each round, the algorithm computes St−1 = −
∑t−1

i=1 gi/G, and the

prediction xt is the derivative ∇SV evaluated at (t, St−1). We will specifically consider

Algorithm 3.2, which is a variant based on the discrete derivative ∇̄SV , cf. (3.2). It is

essentially the same as Algorithm 2.7 in Chapter 2.

Algorithm 3.2 Our second algorithm: 1D comparator adaptive OLO with switching
costs.

Require: A hyperparameter C > 0, the Lipschitz constant G, and a potential function
V (t, S) that implicitly depends on λ and G. Initialize S0 = 0.

1: for t = 1, 2, . . . do
2: Predict xt = ∇̄SV (t, St−1), and receive the loss gradient gt. Let St = St−1−gt/G.
3: end for

One could think of the potential framework as the dual approach of FTRL – the

potential function and the regularizer are naturally Fenchel conjugates. While the

FTRL analysis relies on a one-step regret bound on the primal space (the domain

X , cf. (Orabona, 2019, Lemma 7.1)), the potential framework constructs a similar

one-step relation on the dual space (the space of St, cf. (Zhang et al., 2022b, Lemma

3.1)). Along this interpretation, our key idea is to incorporate switching costs by

scaling on the dual space, rather than only on the primal space. That is, given a

potential function that works without switching costs, we scale the sufficient statistic

sent to its second argument by a function of λ.

To better demonstrate this idea, let us first consider a quadratic potential V (t, S) =
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(1/2) · CGS2. The potential method suggests the prediction xt = ∇SV (t, St−1) =

C
∑t−1

i=1 gi = xt−1 − Cgt−1, which is simply OGD with learning rate C. Scaling on

the primal space means scaling V directly, while scaling on the dual space means

scaling the sufficient statistic S. It is clear that both cases are equivalent to scaling

the effective learning rate, which is the standard way to incorporate switching costs in

bounded domain gradient descent. In other words, for this gradient descent potential,

the two types of scaling are essentially the same.

Now, to achieve optimal comparator adaptivity, we need a better potential where

scaling on the dual space actually makes a difference. With a parameter α that will

eventually depend on λ, we consider Algorithm 3.2 induced by the potential

Vα(t, S) = C
√
αt

2 S/
√
4αt∫

0

 u∫
0

exp(x2)dx

 du− 1

 . (3.4)

When the Lipschitz constant G = 1, Chapter 2 showed that α = 1/2 leads to

comparator adaptivity without switching costs. Here we use α = 4λG−1 + 2, which

amounts to scaling both the primal space and the dual space: on the primal space,

we scale up the overall prediction by Θ(
√
λG−1 + 1), and on the dual space we scale

down the sufficient statistic S by Θ(1/
√
λG−1 + 1). The latter gives us the optimal

comparator adaptive bound (i.e., Pareto-optimal rate in |u| and T ), while the former

helps us obtain the optimal rate in λ. Due to incorporating λ into the potential

function Vα, we call our approach the switching-adjusted potential method.

Although the dual space scaling strategy and the particular structure of Vα may

seem mysterious at first glance, they are actually derived from a continuous-time

analysis. To proceed, we will first present the performance guarantee in the next

subsection, and then revisit the derivation of this strategy in Section 3.4.3.
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3.4.2 Optimal comparator adaptive bound

Despite its simplicity, our second algorithm improves the first one (Theorem 3.1) by a

considerable margin.

Theorem 3.2. If α = 4λG−1 + 2, then Algorithm 3.2 induced by the potential Vα, cf.,

(3.4), guarantees

RegretλT (u) ≤
√

(4λG+ 2G2)T

[
C + |u|

(√
4 log

(
1 +
|u|
C

)
+ 2

)]
,

for all u ∈ R and T ∈ N+.

Theorem 3.2 simultaneously achieves several forms of optimality.

1. Pareto-optimal loss-regret tradeoff: considering the dependence on u and T ,

RegretλT (u) = O
(
|u|
√
T log |u|

)
, while the cumulative loss RegretλT (0) satisfies

RegretλT (0) = O(
√
T ). An existing lower bound (Theorem 2.2) shows that even

without switching costs, all algorithms satisfying a O(
√
T ) loss bound must

suffer a Ω
(
|u|
√
T log |u|

)
regret bound. In this sense, our algorithm attains a

Pareto-optimal loss-regret tradeoff, in a strictly generalized setting with switching

costs.

2. On T alone: RegretλT (u) = O(
√
T ). Despite achieving comparator adaptivity,

the asymptotic rate on T is still the optimal one, matching the well-known

minimax lower bound.

3. On λ alone: RegretλT (u) = O(
√
λ). Our bound has the optimal dependence on

the switching cost weight (Geulen et al., 2010, Theorem 5).

To compare Theorem 3.2 to the result of our first algorithm (Part 1 of Theorem 3.1),

we have to convert them to the same loss-regret tradeoff, i.e., both guaranteeing

RegretλT (0) = O(1) or RegretλT (0) = O(
√
T ). Here we take the first approach. Let
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us only consider the dependence on u and T . By a doubling trick, the bound of

Theorem 3.2 can be converted to C + |u|O
(√

T log(C−1 |u|T )
)
, which improves the

rate C + |u|O
(√

T log(C−1 |u|T )
)
from Theorem 3.1.3 Specifically, the converted

upper bound also attains Pareto-optimality in this regime, i.e., matching the lower

bound Ω
(
|u|
√
T log(|u|T )

)
in (Orabona, 2013), whereas Theorem 3.1 does not.

The proof of Theorem 3.2 is deferred to Section 3.8, which mostly follows a

discretization argument similar to Chapter 2. The key machinery is still the Discrete

Itô formula (Lemma 2.5), but with a different characterization of the discretization

error that replaces Lemma 2.6.

Concretely, if we define the discretization error

∆t := ∇̄tVα(t, St−1) +
1

2
∇̄SSVα(t, St−1)

+G−1λ
[
∇̄SVα(t, St−1 + 1)− ∇̄SVα(t, St−1 − 1)

]
, (3.5)

then there is the cumulative loss bound

RegretλT (0) ≤
T∑
t=1

(gtxt + λ |xt − xt+1|) ≤ −G · Vα(T, ST ) +G
T∑
t=1

∆t.

Controlling the discretization error relies on the key lemma.

Lemma 3.2. If α ≥ 4λG−1 + 2, then for all t and against any adversary, ∆t ≤ 0.

Finally, the augmented regret bound follows from the standard loss-regret duality

(Lemma 2.3).

3.4.3 Continuous-time derivation

Now we show the derivation of our dual space scaling strategy from a continuous-time

perspective. Technically, the procedure is analogous the previous chapter, but the

3Note that here we use C instead of ε to represent the confidence parameter in Theorem 3.1.
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demonstrated insights are novel. Before starting, we need a generalized definition of

the discrete derivative, with a tunable gap increment δ.

∇̄δ
SV (t, S) :=

1

2δ
[V (t, S + δ)− V (t, S − δ)] .

Note that the choice of δ = 1 recovers ∇̄SV (t, S) in Algorithm 3.2. The Lipschitz

constant G will be set to 1 for the ease of exposition.

Step 1: discrete-time recursive inequality First, let us consider the following

inequality that characterizes “admissible” potentials for Algorithm 3.2. For all t and

S,

V (t− 1, S) ≥

max
g∈[−1,1]

{
V (t, S − g) + g∇̄1

SV (t, S) + λ
∣∣∇̄1

SV (t, S)− ∇̄1
SV (t+ 1, S − g)

∣∣} . (3.6)

Finding solutions of this inequality is sufficient for constructing regret bounds. To

see this, suppose the above holds for some V . We can then plug in S = St−1 and

guarantee that for all gt ∈ [−1, 1],

gtxt + λ |xt − xt+1| ≤ V (t− 1, St−1)− V (t, St).

A telescopic sum further leads to a cumulative loss bound RegretλT (0) ≤ V (0, 0) −

V (T, ST ), and a regret bound on RegretλT (u) then follows from the standard loss-regret

duality (Lemma 2.3).

Step 2: ε-scaled recursion Since we ideally need optimal potential functions that

satisfy the inequality (3.6) without any slack, let us turn (3.6) into an equality and

try to approximately solve it. Intuitively this is a challenging task, as there is no

natural way to parameterize the dependence of V on the discrete time t. However, if
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we decrease the discrete time interval, solutions V will be “smoother” and easier to

describe. Concretely, let ε > 0 be a parameter that will later approach 0. On (3.6),

we scale

1. the unit time by ε2;

2. the loss gradient g, the switching cost weight λ and the gap increment by ε.

Both scaling factors are justified in the switching-free setting. Notably, since g

and λ have the same “unit”, it is natural that they are scaled by the same rate. With

that, we obtain a scaled recursion

V (t− ε2, S) =

max
g∈[−1,1]

{
V (t, S − εg) + εg∇̄ε

SV (t, S) + ελ
∣∣∇̄ε

SV (t, S)− ∇̄ε
SV (t+ ε2, S − εg)

∣∣} .
(3.7)

Step 3: continuous-time PDE To proceed, we take the second-order Taylor

approximation on all components of (3.7). Both the zeroth and the first order terms

of ε naturally vanish. Only keeping the second order terms, we have

∇tV (t, S) + max
g∈[−1,1]

(
1

2
g2∇SSV (t, S) + λ |g∇SSV (t, S)|

)
= 0.

As typical potential functions are convex in the sufficient statistic S, it is reasonable

to impose an additional condition ∇SSV (t, S) ≥ 0. Then, the above becomes the 1D

backward heat equation (BHE)

∇tV + α∇SSV = 0,

where α = λ+ 1/2. Compared to the switching-free setting, we obtain the same PDE,

but change the negative thermal diffusivity α from 1/2 to 1/2 + λ. This concisely



83

characterizes the effect of switching costs on the structure of the online learning

problem.

Step 4: solving the PDE The final step is to solve the BHE. With a hyperparam-

eter c, consider solutions of the form

Vα(t, S) = tcg

(
S√
4αt

)
.

Plug it in, the BHE reduces to the Hermite ODE

g′′(z)− 2zg′(z) + 4cg(z) = 0,

which is independent of α. This is a crucial observation, as it reveals the correct way to

generalize the knowledge from the switching-free setting to the setting with switching

costs. More specifically,

• In the switching-free setting, we can take a solution g(z) of the Hermite ODE,

plug in the argument z = S/
√
2t and obtain a potential function Vα.

• When switching costs are considered, the above derivation suggests us to take

the same function g(z) as before, and plug in a scaled argument z = S/
√
4αt.

This is precisely dual space scaling.

Finally, as shown in Chapter 2, a particularly good choice of c is 1/2. Using this

choice yields the switching-adjusted potential (3.4).

Remark 3.1. To summarize, through this derivation we aim to demonstrate a key

benefit of the continuous-time analysis: it makes the generalization of algorithmic

structures easier. This was not presented in Chapter 2, but could be useful in the

broader online learning context.

Meanwhile, we do not intend to overclaim its strength – although the continuous-

time analysis provides useful intuition, we ultimately care about discrete-time regret

bounds. Discretizing such arguments relies on an obscure argument that has not
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been made concrete yet: “Vα derived in the continuous time also serves as a good

potential in the discrete time.” Indeed, verifying this property is technically nontrivial

(Section 3.4.2), and doing so requires a slightly more conservative choice of α (i.e.,

4λ+ 2) than what is suggested above.

3.4.4 Extension

All the results so far (of our second algorithm) are established in the 1D unconstrained

setting. We now show how to extend them to the constrained setting and the high

dimensional setting. The latter is fairly standard. The former is more involved, which

also leads to a similar cumulative switching cost bound as Part 2 of Theorem 3.1,

but with a much simplified analysis. This property is critical for the tracking control

application considered in (Zhang et al., 2022a).

Constrained domain First, consider a constrained domain X ⊂ R. We can use

the standard black-box reduction (Algorithm 2.2) on top of our 1D unconstrained

algorithm (Algorithm 3.2), such that the exact bound in Theorem 3.2 carries over

(w.r.t. any constrained comparator u ∈ X ). Concretely, the pseudo-code is shown as

Algorithm 3.3, where Π denotes the absolute value projection in 1D.

Algorithm 3.3 1D constrained OLO with switching costs.

Require: A hyperparameter C > 0, a closed and convex domain X ⊂ R, and an
unconstrained algorithm A (Algorithm 3.2 induced by V4λG−1+2 and the hyperpa-
rameter C). Let x∗ be an arbitrary point in X .

1: for t = 1, 2, . . . do
2: Query A for its prediction x̃t.
3: Predict xt = ΠX (x̃t + x∗) and receive a loss gradient gt.
4: Define a surrogate loss gradient g̃t as

g̃t =

{
gt, if gt(x̃t + x∗) ≥ gtxt,

0, otherwise,

and send g̃t to A.
5: end for
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Similar strategies apply to higher-dimensional problems, but here we emphasize the

1D special case due to an additional property: if the domain X has a finite diameter

D, then the switching cost alone of the combined algorithm has a Õ(D
√
τ) bound

on any time interval of length τ , similar to Part 2 of Theorem 3.1. This could be

useful when switching costs have high priority (Sherman and Koren, 2021; Wang et al.,

2021) and should be independently bounded. Moreover, it allows the combination

of comparator adaptive algorithms (Zhang et al., 2022a) in settings with long term

prediction effects.

Theorem 3.3. Let x∗ be an arbitrary point in X . For all C > 0, Algorithm 3.3

guarantees

RegretλT (u) ≤
√

(4λG+ 2G2)T

[
C + |u− x∗|

(√
4 log

(
1 +
|u− x∗|
C

)
+ 2

)]
,

for all u ∈ X and T ∈ N+. Moreover, if X has a finite diameter D, then on any time

interval [T1 : T2] ⊂ N+, the same algorithm guarantees

T2−1∑
t=T1

|xt − xt+1| ≤ 22
√
T2 − T1

[
2D + C + 2D

√
log(1 +DC−1)

]
.

General dimensional domain In the general dimensional domain, the switching

cost is modeled by the Lp norm, as introduced at the beginning of this chapter.

Furthermore, the loss gradients, which are in Rd, have the dual norm of Lp bounded

by G.

When p = 1, we have X = Rd, ∥gt∥∞ ≤ G, and the switching costs are measured

by the L1 norm. We run Algorithm 3.2 on each coordinate separately (Streeter

and Mcmahan, 2012), and scale the hyperparameter C by 1/d. The pseudo-code is

presented as Algorithm 3.4. The proof is a simple summation over all coordinates,

therefore omitted.
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Algorithm 3.4 d-dimensional OLO with L1 norm switching costs.

Require: A hyperparameter C > 0 and Algorithm 3.2.
1: For each dimension i ∈ [1 : d], initialize a copy of Algorithm 3.2 as Ai. It uses the

hyperparameter C/d and our potential Vα, with α = 4λG−1 + 2.
2: for t = 1, 2, . . . do
3: For all i, query Ai and assign its prediction to xt,i. Define a vector as xt =

[xt,1, . . . , xt,d] ∈ Rd.
4: Predict xt and receive a loss gradient gt = [gt,1, . . . , gt,d].
5: For all i, send gt,i to Ai as a new surrogate loss gradient.
6: end for

Theorem 3.4. For all C > 0, Algorithm 3.4 guarantees (α = 4λG−1 + 2)

T∑
t=1

⟨gt, xt − u⟩+ λ
T−1∑
t=1

∥xt − xt+1∥1

≤ G
√
αT

[
C + ∥u∥1

(√
4 log

(
1 +
∥u∥∞ d

C

)
+ 2

)]
,

for all u ∈ Rd and T ∈ N+.

As for L2 norm switching costs, we can follow the polar decomposition technique

(Algorithm 2.1), which uses our 1D unconstrained OLO algorithm as the base algorithm.

The only required modification is that the base algorithm should account for an extra

regularization term, as in Algorithm 3.1 and Theorem 3.1. Concretely, instead of

bounding the augmented regret (3.1), we should bound

T∑
t=1

gt(xt − u) + λ

T−1∑
t=1

|xt − xt+1|+
γ√
t

T∑
t=1

|xt| , (3.8)

for any given weight γ.

To this end, we can consider a surrogate OCO problem with switching costs, where

the loss functions are defined by lt(x) = gtx + γt−1/2 |x|. Such a loss function is

Lipschitz, therefore we can use the OCO-OLO reduction, and run our Algorithm 3.2

on its linearized surrogate. Details of this step are standard, therefore omitted.
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Given a 1D algorithm with controlled (3.8), we can apply the polar decomposition

trick surveyed in Section 1.4 on top of it. For clarity, such a procedure is restated as

Algorithm 3.5 below. The resulting algorithm has its augmented regret bounded by

Algorithm 3.5 Extension to Rd.

Require: A 1D algorithm with a bound on (3.8), denoted by Ar.
1: Define AB as OGD on Bd with learning rate ηt = 1/(G

√
t), initialized at the origin

0.
2: for t = 1, 2, . . . do
3: Obtain yt ∈ R from Ar and zt ∈ Rd from AB.
4: Predict xt = ytzt ∈ Rd, observe gt ∈ Rd.
5: Return ⟨gt, zt⟩ and gt as the t-th loss gradient to Ar and AB, respectively.
6: end for

T∑
t=1

⟨gt, xt − u⟩+ λ
T−1∑
t=1

∥xt − xt+1∥2

=
T∑
t=1

⟨gt, ytzt − u⟩+ λ
T−1∑
t=1

∥ytzt − yt+1zt+1∥2

≤
T∑
t=1

(⟨gt, zt⟩ yt − ⟨gt, zt⟩ ∥u∥2) + ∥u∥2
T∑
t=1

〈
gt, zt −

u

∥u∥2

〉

+ λ

T−1∑
t=1

|yt − yt+1| ∥zt+1∥2 + λ

T−1∑
t=1

∥zt − zt+1∥2 |yt|

≤
T∑
t=1

(⟨gt, zt⟩ yt − ⟨gt, zt⟩ ∥u∥2) + λ
T−1∑
t=1

|yt − yt+1|+
T−1∑
t=1

λ√
t
yt

+ ∥u∥2
T∑
t=1

〈
gt, zt −

u

∥u∥2

〉
.

On the RHS of the last inequality, the first three terms can be bounded via (3.8), and

the last term can be controlled by the standard result of OGD.
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3.5 Learning with expert advice

In this section, we extend our results so far on OCO to a related problem called

Learning from Expert Advice (LEA) (Littlestone and Warmuth, 1994), still with

switching costs.

LEA is another well-studied problem in online learning, with a history even longer

than OCO. The original setting is that we are given d experts, i.e., decision making

algorithms. In each round we choose to follow one of them (indexed by it) in the face

of an adversarial environment, and then observe the loss (a real number) of all the

experts, denoted by gt,1, . . . , gt,d. The goal is to asymptotically perform no worse than

the best of the experts. In other words, we aim to show that the regret

T∑
t=1

gt,it −
T∑
t=1

gt,j

is sublinear in T for all comparator expert index j.

Since the proposal of OCO/OLO, LEA is often formulated as their special case on

the probability simplex. Concretely, we adopt the following definition.

Definition 8 (Learning with Expert Advice). LEA is the special case of OLO where

• the domain X is the probability simplex ∆(d); and

• the linear loss functions are G-Lipschitz with respect to the L∞ norm. That is,

the loss gradient gt is in the L∞ norm ball of radius G, centered at the origin.

The relation of this OLO formulation to the original expert setting is that, any

prediction given by the OLO algorithm is a probability vector in ∆(d), from which

we can sample the index it, or equivalently, an individual expert to follow. In this

way, the instantaneous loss ⟨gt, xt⟩ in OLO is equivalent to the expected loss of the

expert we choose, and furthermore, the regret of OLO (with comparators being the

unit directional vectors) is equivalent to the expected regret of our expert selection
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procedure. The reader is referred to (Orabona, 2019, Section 6.7) for a detailed

treatment.

For LEA, there is a classical minimax algorithm called Exponentiated Gradient

(EG) (Littlestone and Warmuth, 1994). It is another instance of the Online Mirror

Descent (OMD) framework which generalizes OGD, therefore, EG shares essentially a

similar intuition as OGD. With an unknown T , EG guarantees

sup
Env;u∈∆(d)

RegretT (Env, u) = O
(
G
√
T log d

)
.

The limitation is that, the parameter d can be large in certain situations (for example,

exponential in some auxiliary variable), therefore the log d term in the bound is still

not ideal. Through a more theoretical lens, the log d term measures the capacity of

the comparator class just like the D factor in the standard O(DG
√
T ) regret bound

of OGD. Therefore, we may improve it using the philosophy of comparator adaptivity.

Comparator adaptivity in LEA Although LEA is a special case of OLO, the

geometry of the domain motivates a different form of bounds from Section 1.4. The

typical comparator adaptive regret bound in LEA has the form O
(
G
√
T ·KL(u||π)

)
,

where u, π ∈ ∆(d) represent the comparator and a user-chosen prior. Such an idea

was initiated in (Chaudhuri et al., 2009), and the analysis was improved and extended

by a series of works (Chernov and Vovk, 2010; Luo and Schapire, 2015; Koolen and

Van Erven, 2015; Chen et al., 2021; Negrea et al., 2021; Portella et al., 2022). Notably,

a comparator adaptive LEA algorithm naturally induces a bound on the ε-quantile

regret – the regret with respect to the ε-quantile best expert. Lower bounds were

considered in (Negrea et al., 2021).

In this section, we aim to improve the state-of-the-art comparator adaptive LEA

bounds, in a strictly generalized setting with switching costs. Just like how switching

costs were introduced in OCO at the beginning of this chapter, we define the setting
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as follows.

Definition 9 (LEA with switching costs). LEA with switching costs is the following

variant of LEA: after the t-th round, besides suffering the instantaneous loss ⟨gt, xt⟩,
the learning agent also suffers a switching cost λ ∥xt − xt−1∥1, where the weight λ is

known to the agent. Without loss of generality, x0 = 0. With the augmented regret

defined as

RegretλT (Env, u) :=
T∑
t=1

⟨gt, xt − u⟩+ λ

T−1∑
t=1

∥xt+1 − xt∥1 ,

our goal is to upper bound

RegretλT (u) := sup
Env

RegretλT (Env, u),

for all T ∈ N+ and u ∈ ∆(d).

When G = 1, minimax algorithms such as the Shrinking Dartboard (Geulen et al.,

2010) guarantee RegretλT (u) = O(
√
λT log d), which is similar to EG, but with the

additional switching costs. Before our results, comparator adaptivity had not been

established in LEA with switching costs.

3.5.1 Reduction of LEA to OLO

Our main contribution is a new reduction technique that converts comparator adaptive

LEA to comparator adaptive OLO (on Rd). Such a reduction problem has been

considered in prior works on vanilla LEA (Luo and Schapire, 2015; Orabona and

Pál, 2016), but the existing reduction technique is unsatisfactory for controlling the

switching cost. Let us explain.

The existing technique has the following procedure. Given a 1D OLO algorithm

that predicts on R+, independent copies are created for each coordinate (of Rd) and

updated using certain surrogate losses. A meta-algorithm queries the coordinate-wise

predictions {wt,i; i ∈ [1 : d]}, collects them into a weight vector wt = [wt,1, . . . , wt,d],
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and finally predicts the scaled weight xt = wt/ ∥wt∥1 on ∆(d). Despite its success

in the vanilla LEA problem, such an approach has a discontinuity problem when

switching costs are incorporated – if two consecutive weights wt and wt+1 are both

close to the origin, then simply scaling them to ∆(d) can lead to a large switching cost,

even when ∥wt − wt+1∥1 is small. This problem is exacerbated by the typical setting4

of w1 = 0, due to the associated analysis. A graphical demonstration is provided in

Figure 3·1 (Left).
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𝑤𝑡+1
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are inside Δ(𝑑)
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are outside Δ(𝑑)

Existing approaches Our approach

Figure 3·1: Switching costs in LEA-OLO reductions. Left: existing
approaches. Right: ours, where the projection of wt contains two cases.
(i) ∥wt∥1 ≥ 1, shown in green; (ii) ∥wt∥1 < 1, shown in black.

In contrast, our solution is based on a unified view of the LEA-OLO reduction

and the constrained domain reduction surveyed as Algorithm 2.2 in Section 2.3.

Starting without switching costs, we observe that the general Banach version of the

latter (Cutkosky and Orabona, 2018) can be adopted to turn the unconstrained

prediction wt ∈ Rd
+ to the constrained one xt ∈ ∆(d), which generalizes the existing

scaling procedure. Therefore, specialized techniques like (Luo and Schapire, 2015;

Orabona and Pál, 2016) are not required for this task. Algorithmically, we set

xt ∈ argminx∈∆(d) ∥x− wt∥1 as opposed to xt = wt/∥wt∥1. The major benefit is the

non-uniqueness of the L1 norm projection – if ∥wt∥ < 1, then any xt ∈ ∆(d) satisfying

4When wt = 0, xt can be arbitrary on ∆(d) by definition. However, as wt changes continuously
w.r.t. the observed information, it could hover around 0 at some point, thus experiencing the sketched
problem.
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{xt,i ≥ wt,i;∀i} minimizes ∥x− wt∥1 on ∆(d). This brings more flexibility to the

algorithm design. Specifically, we adopt

1. the orthogonal projection xt = wt + d−1(1− ∥wt∥1) when ∥wt∥1 ≤ 1;

2. the scaling xt = wt/∥wt∥1 when ∥wt∥1 > 1.

With the addition of switching costs, the orthogonal projection is better for

controlling it, as shown in Figure 3·1 (Right). Concretely, we present the pseudocode

as Algorithm 3.6, which is the first comparator adaptive algorithm for LEA with

switching costs. It uses our second algorithm for OLO with switching costs as the

base algorithm, whose predictions are aggregated and constrained to ∆(d) via the

aforementioned L1 norm projection. The performance guarantee is the following

theorem.

Theorem 3.5. For LEA with switching costs, given any prior π in the relative interior

of ∆(d), Algorithm 3.6 guarantees

RegretλT (u) =
[√

TV(u||π) ·KL(u||π) + 1
]
·O
(√

(λG+G2)T
)
,

for all u ∈ ∆(d) and T ∈ N+.

We emphasize two strengths of this bound.

1. Since it is comparator adaptive, such a bound only implicitly depends on d

through the divergence term
√
TV ·KL. In favorable cases we may have a good

prior π such that TV(u||π) ·KL(u||π) = O(1); this will save us a
√
log d factor

compared to minimax algorithms (with switching costs), such as Follow the

Lazy Leader (Kalai and Vempala, 2005) and Shrinking Dartboard (Geulen et al.,

2010).

2. Even without switching costs, we improve the
√
KL divergence term in existing

comparator adaptive bounds (Chaudhuri et al., 2009; Luo and Schapire, 2015;
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Algorithm 3.6 Converting OLO to LEA via the constrained domain reduction.

Require: A prior π = [π1, . . . , πd] in the relative interior of ∆(d), and Algorithm 3.3
(our improve algorithm for 1D OLO with switching costs, with an added constraint
and a coordinate shift).

1: For each dimension i ∈ [1 : d], initialize a copy of Algorithm 3.3 as Ai. We set
λ̃ = 4λ and G̃ = 2G as the switching cost weight and the Lipschitz constant
adopted internally by Ai. Moreover, Ai uses the domain X = R+, the offset
x∗ = πi, the hyperparameter πi, and our potential Vα, where α = 4λ̃G̃−1 + 2.

2: for t = 1, 2, . . . do
3: For all i, query Ai and assign its prediction to wt,i. Define the weight vector as

wt = [wt,1, . . . , wt,d] ∈ Rd
+.

4: Compute the LEA prediction xt = [xt,1, . . . , xt,d] from

xt,i =
wt,i +

1
d
max{0, 1− ∥wt∥1}

max{∥wt∥1 , 1}
.

5: Predict xt and receive a loss vector gt ∈ [−G,G]d.
6: For all i, compute

zt,i =


gt,i − ∥gt∥∞ , if ∥wt∥1 < 1,

gt,i, if ∥wt∥1 = 1,

gt,i + ∥gt∥∞ , if ∥wt∥1 > 1,

and return zt,i to Ai as a new surrogate loss.
7: end for

Orabona and Pál, 2016) to
√
TV ·KL. The latter is better since (i) TV is always

less than 1, and (ii) there exist p, q ∈ ∆(d) such that TV(p||q) ·KL(p||q) ≤ 1 but

KL(p||q) ≥
√
log d− o(1) (see Example 3.1). In other words, compared to

√
KL,

the
√
TV ·KL bound is never worse (up to constants), and can save at least a

(log d)1/4 factor in certain cases. Generalizations of root KL to f-divergences have

been considered in (Alquier, 2021; Negrea et al., 2021), but to our knowledge,

no prior algorithm guarantees a better divergence term than root KL.

In summary, our result for the first time achieves comparator adaptivity in LEA with

switching costs. Even in the absence of switching costs, we improve the state-of-the-art
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comparator adaptive LEA regret bounds through a better divergence characterization

than KL.

3.6 Application and experiment

To complement our theoretical results, we present applications to a portfolio selec-

tion problem with transaction costs. Online portfolio selection has been studied by

multiple communities, resulting in a large amount of literature. Here we focus on an

unconstrained setting, allowing both short selling (i.e., holding negative amount of

assets) and margin trading (i.e., borrowing money to buy assets).

Setting We consider a market with d assets and discrete trading period t ∈ N+.

In the t-th round, an algorithm chooses a portfolio vector xt = [xt,1, . . . , xt,d] ∈ Rd,

where xt,i is the number of shares of the i-th asset that the algorithm suggests to

hold. Compared to the previous round, we need to buy xt,i − xt−1,i shares
5 (or sell, if

negative), which requires paying a λ |xt,i − xt−1,i| transaction cost. Then, the market

reveals a number gt,i ∈ [−G,G], which represents the price change per share (of the

i-th asset) in this round. This effectively increases the value of our portfolio by ⟨gt, xt⟩.

The considered performance metric is the increased amount of wealth on any time

horizon [1 : T ] ⊂ N+, and such wealth includes the total value of our portfolio plus

cash. Our goal is to show that the performance of our algorithm is never much worse

than that of any unconstrained Buy-and-Hold (BAH) strategy, which picks a portfolio

vector u ∈ Rd at the beginning and holds that amount throughout the considered time

horizon. That is, we aim to upper bound
∑T

t=1 ⟨−gt, xt − u⟩ + λ
∑T−1

t=1 ∥xt − xt+1∥1
for all u ∈ Rd and T ∈ N+. This is exactly the setting of Algorithm 3.4 with flipped

gradients, therefore the same theoretical result (Theorem 3.4) carries over.

5Without loss of generality, assume x0 = x1.
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Synthetic market First, let us consider an experiment with synthetic data.

We test both 1D algorithms (Algorithm 3.1 with the constraint [0, R̄] removed

and the betting fraction βt allowed to be negative; and Algorithm 3.2) proposed in

this chapter, extended to higher dimensions using the coordinate-wise construction

(Algorithm 3.4). Both algorithms require a confidence parameter (ε in Algorithm 3.1;

C in Algorithm 3.2), and we set them to 1 following the practice of comparator

adaptive algorithms (Orabona and Pál, 2016; Chen et al., 2022; Zhang et al., 2022a).

Regarding the synthetic market, we let G = 1, λ = 0.1, and the market contains

five assets with different return characteristics. Each gt,i is the summation of a i.i.d.

noise, a periodic fluctuation and a constant trend. Specifically, we consider three

different market return models. The first is

gt,1 = 0.4 · Uniform[−1, 1] + 0.4 sin[(t/500) · π] + 0.2,

gt,2 = 0.5 · Uniform[−1, 1] + 0.3 sin[(t/500 + 1/2) · π] + 0.2,

gt,3 = 0.6 · Uniform[−1, 1] + 0.2 sin[(t/500 + 1) · π] + 0.2,

gt,4 = 0.7 · Uniform[−1, 1] + 0.1 sin[(t/500 + 3/2) · π] + 0.2,

gt,5 = 0.8 · Uniform[−1, 1] + 0.2.

The second model is

gt,1 = 0.2 · Uniform[−1, 1] + 0.4 sin[(t/500) · π] + 0.4,

gt,2 = 0.3 · Uniform[−1, 1] + 0.3 sin[(t/500 + 1/2) · π] + 0.4,

gt,3 = 0.4 · Uniform[−1, 1] + 0.2 sin[(t/500 + 1) · π] + 0.4,

gt,4 = 0.5 · Uniform[−1, 1] + 0.1 sin[(t/500 + 3/2) · π] + 0.4,

gt,5 = 0.55 · Uniform[−1, 1] + 0.45.



96

The third model is the same as the second one, except we replace gt,5 by

gt,5 = 0.5 · Uniform[−1, 1] + 0.5.

For each market return model, we test both algorithms in 50 random trials, and

the increased wealth
∑t

τ=1 ⟨gτ , xτ ⟩ − λ
∑t−1

τ=1 ∥xτ − xτ+1∥1 (mean ± std) is plotted in

Figure 3·2, higher is better. In all three settings, our second algorithm (denoted as

“ours”) beats the first one (denoted as “baseline”) by a considerable margin, due to

being a lot less conservative.

0 500 1000 1500 2000 2500 3000
t

0

20

40

60

80

100

120

140

In
cr

ea
se

d 
we

al
th

Ours, C = 1, = 0.1
Baseline, C = 1, = 0.1

0 500 1000 1500 2000 2500 3000
t

0

20

40

60

80

100

120

In
cr

ea
se

d 
we

al
th

Ours, C = 1, = 0.1
Baseline, C = 1, = 0.1

0 500 1000 1500 2000 2500 3000
t

0

50

100

150

200

250

300

In
cr

ea
se

d 
we

al
th

Ours, C = 1, = 0.1
Baseline, C = 1, = 0.1

Figure 3·2: Synthetic market experiment with different market models.
From left to right: the first, the second and the third market model.

Historical stock data Next, we present results on the historical US stock data.

Eight stocks (Table 3.1) are considered on a time period of 5 years (1/1/2013 to

1/1/2018).

The algorithm trades once per day after the market closes, based on the closing

price. We take the difference between the closing price on the (t+ 1)-th day and the

closing price on the t-th day, and define it as the market vector gt. The largest single

day price change for any stock is less than $15, therefore G is set in a posterior manner

to 15. We consider a hypothetical broker that charges $0.1 per share, therefore define

λ = 0.1.

Same as the synthetic market experiment, we test both algorithms from this chapter.
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Table 3.1: List of considered stocks

Company Symbol

Apple Inc. AAPL

Berkshire Hathaway Inc. Class B BRK.B

Meta Platforms Inc. FB

Johnson & Johnson JNJ

JPMorgan Chase & Co. JPM

Microsoft Corporation MSFT

Pfizer Inc. PFE

Exxon Mobil Corporation XOM

The second algorithm is in its default parameter-free implementation (C = 1). However,

setting the same confidence parameter is too conservative for the first algorithm (i.e.,

the “baseline”), which means the baseline hardly makes any investment, making the

comparison less interesting. Therefore we set the confidence parameter as 10 for the

baseline (denoted by ε in Algorithm 3.1), thus giving it an advantage at the beginning.

In this way, the increased wealth of the two algorithms is roughly comparable.

We plot the results in Figure 3·3. Specifically, Figure 3·3 (Left) shows the increased

wealth (in USD) over the considered time period. Figure 3·3 (Right) shows the

cumulative amount of investment (in USD), which is the total net amount of cash the

investor uses to buy stocks (i.e., increases when buying, and decreases when selling),

plus the transaction costs paid to the broker.

From the plot we can see that the baseline is more aggressive at the beginning,

due to a much larger C. Therefore, it slightly makes more profit during 2013-2014.

When the market oscillates and declines in 2015 and 2016, the two algorithms perform

roughly the same, while the baseline has a lower risk due to holding a smaller portfolio

at the time. However, the major difference starts after mid-2016, when the market
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Figure 3·3: Experiment on historical US stock data. Left: the increased
wealth of the two algorithms. Right: total amount of investment since
the start of the experiment (1/1/2013), including the transaction costs
paid to the broker.

grows rapidly. Our second, improved algorithm is able to identify this trend and

quickly increase the amount of investment. This brings a lot more profit than the

baseline, which hardly recovers its confidence from the declining market in the previous

year. Such an advantage is partly due to the better control of switching costs, and

partly due to a better risk-return tradeoff.

Our experiment also shows a limitation of the unconstrained investment setting.

Throughout this five year period, the second algorithm invests a total amount of

∼$6.5 (including the transaction costs), and makes a total profit of ∼$3. However, in

practice, one typically invests a lot more than this (let’s say, $10,000), and expect a

similar rate of return. Our setting does not model such a budget explicitly; instead, it

relies on the comparator adaptivity of the trading algorithms to increase the invested

amount. Such a process can be slow, especially since we only consider trading once per

day. Therefore, to use our algorithms in real trading situations, one has to tune the

confidence parameter C to implicitly take his budget and tolerable risk into account.

For example, using C = 1000 would result in investing $6,500 throughout the five

year period, and make a total profit of $3,000. The connection of this approach to
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rebalancing could be an interesting direction for future works.

3.7 Summary

This chapter investigates the design of comparator adaptive algorithms in the presence

of switching costs. By carefully trading off these two opposite considerations, we

present two OCO algorithms, with the second one achieving several forms of optimality.

Notably, the key idea of this algorithm is not guessed, but derived from a continuous-

time analysis. Through this result, we aim to demonstrate a key strength of the

continuous-time PDE analysis – it makes the generalization of algorithmic structures

much easier. Such an observation could open up exciting possibilities. For example,

• Does this approach apply to other variants of the online learning problem?

• Can we use it to generalize other forms of adaptivity?

• Continuous-time potentials have been extensively studied under the framework

of potential theory (Doob, 1984). Can we borrow techniques from there to further

improve the workflow of algorithm design?

3.8 Proofs

3.8.1 The first algorithm

Lemma 3.1

Proof of Lemma 3.1. For clarity, Equation (3.3) is copied here.

Wealtht = (1− g̃tβt − γβt/
√
t)Wealtht−1 − λ|βtWealtht−1 − βt+1Wealtht|.

By definition, |λβt+1| ≤ 1/2. The RHS of (3.3) is 1/2-Lipschitz with respect to

Wealtht, and the LHS is Wealtht itself. Therefore, a solution exists and is unique.
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To prove Wealtht > 0, we use induction. Wealth0 = ε > 0. Suppose Wealtht−1 > 0,

then

Wealtht ≥ (1− g̃tβt − γβt/
√
t)Wealtht−1 − λβtWealtht−1 − λβt+1 |Wealtht| .

Let z = λβt+1sign(Wealtht). Note that |z| ≤ 1/2 and |g̃t + γ/
√
t + λ|βt ≤ 1/2.

Therefore,

Wealtht ≥
1− g̃tβt − γβt/

√
t− λβt

1 + z
Wealtht−1 > 0.

Theorem 3.1 The proof is a lengthy one, with several auxiliary lemmas introduces

in the end.

Proof of Theorem 3.1. We prove the two parts of Theorem 3.1 separately, starting

from the second part.

Combining Lemma 3.4 and Lemma 3.5, for all t ≥ 2,

|x̃t − x̃t+1| ≤
6

Ct
· 4R̄C

√
t− 1 ≤ 24R̄

1√
t
.

For t = 1, the same result can be verified. Therefore, for all [a : b] ⊂ [1 : T ],

b∑
t=a

|xt − xt+1| ≤ 24R̄
b∑

t=a

1√
t
≤ 24R̄

b∫
a−1

1√
x
dx

≤ 24R̄
(
2
√
b− 2

√
a− 1

)
≤ 48R̄

√
b− a+ 1.

The fourth inequality is due to
√
b−
√
a− 1 ≤

√
b− a+ 1.

Now consider the proof of the first part of the theorem. Due to the complexity, we

proceed in steps.

Step 1 The overall strategy

The considered bound does not rely on the bounded domain, therefore the first step

is to apply the reduction from constrained OLO to unconstrained OLO (Lemma 2.2)
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and the contraction property of Euclidean projection to show that

T∑
t=1

(
gtxt − gtu+ λ |xt − xt+1|+

γ√
t
|xt|
)

≤
T∑
t=1

(
g̃tx̃t − g̃tu+ λ |x̃t − x̃t+1|+

γ√
t
|x̃t|
)
. (3.9)

Note that Wealtht−1 is positive due to Lemma 3.1, and βt ≥ 0 from our construction.

Therefore, x̃t ≥ 0. From here, we can focus on bounding the RHS of (3.9) with |x̃t|
replaced by x̃t. Also note that |g̃t| ≤ |gt| ≤ G from Lemma 2.2.

From (3.3), we can rewrite wealth as

WealthT = ε−
T∑
t=1

(
g̃tx̃t + λ |x̃t − x̃t+1|+

γ√
t
x̃t

)
.

If we guarantee WealthT ≥ F (−
∑T

t=1 g̃t) for an arbitrary function F , then

T∑
t=1

(
g̃tx̃t − g̃tu+ λ |x̃t − x̃t+1|+

γ√
t
x̃t

)
= ε+

〈
−

T∑
t=1

g̃t, u

〉
−WealthT

≤ ε+

〈
−

T∑
t=1

g̃t, u

〉
− F

(
−

T∑
t=1

g̃t

)
≤ ε+ sup

X∈R
(⟨X, u⟩ − F (X)) = ε+ F ∗(u),

where F ∗ is the Fenchel conjugate of F . Therefore, our goal is to find such an lower

bound for WealthT , and then take its Fenchel conjugate.

Step 2 Recursion on the wealth update

Now consider (3.3). There are two cases: (i) βtWealtht−1 ≥ βt+1Wealtht; (ii)

βtWealtht−1 < βt+1Wealtht. If βtWealtht−1 ≥ βt+1Wealtht, then

(1− λβt+1)Wealtht = (1− g̃tβt − λβt − γβt/
√
t)Wealtht−1,

logWealtht = logWealtht−1 + log[1− βt(g̃t + λ+ γ/
√
t)]− log(1− λβt+1).

Note that βt|g̃t + λ+ γ/
√
t| ≤ 1/2 and λβt+1 < 1. Applying log(1− x) ≥ −x− x2 for
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all x ≤ 1/2 and log(1 + x) ≤ x for all x > 1, we have

logWealtht ≥ logWealtht−1 − βt(g̃t + λ+ γ/
√
t)− β2

t (g̃t + λ+ γ/
√
t)2 + λβt+1

≥ logWealtht−1 − g̃tβt − γβt/
√
t− C2β2

t + λ(βt+1 − βt).

Similarly, if βtWealtht−1 < βt+1Wealtht, then

logWealtht ≥ logWealtht−1 − g̃tβt − γβt/
√
t− C2β2

t + λ(βt − βt+1).

Therefore, combining both cases, we have

logWealtht ≥ logWealtht−1 − g̃tβt − γβt/
√
t− C2β2

t + λ|βt − βt+1|,

and summed over [1 : T ],

logWealthT ≥ log ε−
T∑
t=1

g̃tβt − C2

T∑
t=1

β2
t − γ

T∑
t=1

βt√
t
− λ

T∑
t=1

|βt − βt+1|. (3.10)

Step 3 Bounding the sums on the RHS of (3.10)

We start from the first two sums on the RHS of (3.10). βt is the output of Follow

the Leader (FTL) on the strongly convex losses ψt(β) = g̃tβ + C2β2 + I{0 ≤ β ≤
1/(C

√
2t)}(β), where I{0 ≤ β ≤ 1/(C

√
2t)}(β) is a convex function of β that equals 0

when 0 ≤ β ≤ 1/(C
√
2t) and infinity otherwise. Note that ψt is 2C

2-strongly convex,

therefore a standard result shows that the regret of this FTL problem is logarithmic

in T . Concretely, from Corollary 7.17 of (Orabona, 2019),

T∑
t=1

(
g̃tβt + C2β2

t

)
− min

0≤u≤1/(C
√
2T )

T∑
t=1

(
g̃tu+ C2u2

)
≤ G2

4C2
(1 + log T ) .

Moreover, taking u = 1/(C
√
2T ),

min
0≤u≤1/(C

√
2T )

T∑
t=1

(
g̃tu+ C2u2

)
≤
∑T

t=1 g̃t

C
√
2T

+
1

2
.
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As for the other sums in (3.10),

T∑
t=1

βt√
t
=

1√
2C

T∑
t=1

1

t
≤ 1√

2C
(1 + log T ).

Applying Lemma 3.3,

T∑
t=1

|βt − βt+1| ≤
2

C

T∑
t=1

1

t
≤ 2

C
(1 + log T ).

Plugging the above into (3.10),

logWealthT ≥ log ε−
∑T

t=1 g̃t

C
√
2T
− 2(1 + log T )− 1

2
,

WealthT ≥
ε

exp(5/2) · T 2
exp

(
−
∑T

t=1 g̃t

C
√
2T

)
.

Step 4 Taking Fenchel conjugate

From the Fechel conjugate table, if f(x) = a exp(bx) with a, b > 0, then for all

θ ≥ 0,

f ∗(θ) =
θ

b

(
log

θ

ab
− 1

)
.

Applying this result on

F (x) =
ε

exp(5/2) · T 2
exp

(
x

C
√
2T

)
,

for all u ≥ 0 we have

F ∗(u) = uC
√
2T

(
3

2
+ log

√
2uCT 5/2

ε

)
.

Combining the above with Step 1 completes the proof.

The above proof of Theorem 3.1 relies on three auxiliary lemmas. The first lemma

states that the betting fraction βt changes slowly.

Lemma 3.3. For all t ≥ 1, |βt+1 − βt| ≤ 2/(Ct).
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Proof of Lemma 3.3. The result for t = 1 trivially holds. We only consider t ≥ 2.

Since the Euclidean projection to a closed convex set is contractive, we have

∣∣∣ΠBt(β̂t)− ΠBt(β̂t+1)
∣∣∣ ≤ ∣∣∣β̂t − β̂t+1

∣∣∣ = ∣∣∣∣∣ g̃t + 2C2β̂t
2C2t

∣∣∣∣∣ ≤ G

C2t
.

Moreover,∣∣∣ΠBt(β̂t+1)− ΠBt+1(β̂t+1)
∣∣∣ ≤ ∣∣∣∣ 1√

2C
√
t− 1

− 1√
2C
√
t

∣∣∣∣ ≤ 1

2
√
2C
√
t(t− 1)

≤ 1

Ct
.

Applying the triangle inequality yields the result.

The second auxiliary lemma quantifies the movement of Algorithm 3.1 using

Wealtht. By doing this, bounding the switching cost (Part 2 of Theorem 3.1) reduces

to bounding the growth of Wealtht.

Lemma 3.4. For all t ≥ 1,

|x̃t − x̃t+1| ≤
6

Ct
Wealtht−1.

Proof of Lemma 3.4. Assume t > 1 for the rest of this proof; the case of t = 1 can be

verified similarly. Starting from (3.3), some simple algebra yields

x̃t+1 − x̃t = βt+1Wealtht − βtWealtht−1

=

(
βt+1 − βt − βt+1g̃tβt − βt+1βt

γ√
t

)
Wealtht−1

− λβt+1 |βt+1Wealtht − βtWealtht−1| .

From Lemma 3.1, Wealtht−1 > 0, therefore,

(1− λβt+1) |βt+1Wealtht − βtWealtht−1|

≤
∣∣∣∣βt+1 − βt − βt+1g̃tβt − βt+1βt

γ√
t

∣∣∣∣Wealtht−1.



105

Note that 1− λβt+1 ≥ 1/2.

|βt+1Wealtht − βtWealtht−1| ≤ 2

∣∣∣∣βt+1 − βt − βt+1g̃tβt − βt+1βt
γ√
t

∣∣∣∣Wealtht−1

≤ 2 |βt+1 − βt|Wealtht−1 + 2βtβt+1

∣∣∣∣g̃t + γ√
t

∣∣∣∣Wealtht−1.

Applying Lemma 3.3 and the definition of βt and βt+1,

∥x̃t − x̃t+1∥ ≤

(
4

Ct
+

2C

2C2
√
t(t− 1)

)
Wealtht−1 ≤

6

Ct
Wealtht−1.

Following the reasoning above, the third auxiliary lemma bounds the growth rate

of Wealtht, which could be of special interest. The key idea is that, the surrogate loss

(Line 3 of Algorithm 3.1) incentivizes the unconstrained prediction x̃t to be bounded.

Equivalently, the betting amount in the coin-betting algorithm is bounded, and hence

the wealth cannot grow too fast.

Notably, our proof makes a novel use of the black-box reduction from unconstrained

OLO to constrained OLO (Algorithm 2.2): we do not use it as a black-box, but rather

analyze its impact on the unconstrained algorithm.

Lemma 3.5. For all t ≥ 1, Wealtht ≤ 4R̄C
√
t.

Proof of Lemma 3.5. Note that from Lemma 3.1, Wealtht ≥ 0. Additionally from our

definition of βt, we have βt, xt, x̃t ≥ 0.

We prove this lemma in three steps. First, we show a weaker result, Wealtht ≤
GR̄(t+ 1). Using this result, we then prove that x̃t ≤ 2

√
2R̄. In other words, even

though x̃t is the output of a coin-betting-based OLO algorithm that works in the

unbounded domain, it is actually bounded due to the effect of the surrogate losses.

Finally, we revisit wealth and show that Wealtht ≤ 4R̄C
√
t.

Step 1 Prove that for all t ≥ 0, Wealtht ≤ GR̄(t+ 1).
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Consider the two cases in the definition of g̃t. If gtx̃t ≥ gtxt, then g̃t = gt, and

Wealtht = Wealtht−1 − g̃tx̃t − λ|x̃t − x̃t+1| −
γ√
t
|x̃t|

≤Wealtht−1 − gtxt ≤Wealtht−1 + |gt|R̄.

If gtx̃t < gtxt, then g̃t = 0 and Wealtht ≤Wealtht−1. An induction and ε ≤ GR̄ yield

the result.

Step 2 Prove that for all t ≥ 1, x̃t ≤ 2
√
2R̄.

This holds trivially for t = 1. We use induction: suppose this result holds for t,

and we need to show x̃t+1 ≤ 2
√
2R̄. There are two cases: (1) x̃t /∈ V1d; (2) x̃t ∈ V1d.

Note that the first case is only possible when t > 1.

• Case (1.1) x̃t /∈ V1d, gtx̃t ≥ gtxt.

In this case, g̃t = gt ≥ 0 and gtxt ≥ 0. It follows,

Wealtht ≤Wealtht−1 − gtxt ≤Wealtht−1.

Next we consider the three cases of βt.

(i) First, note that βt ̸= 0; otherwise x̃t = βtWealtht−1 = 0 ∈ V1d.

(ii) If βt = β̂t = −
∑t−1

i=1 g̃i/[2C
2(t− 1)], then

βt+1 ≤
∣∣∣β̂t+1

∣∣∣ = 1

2C2t

∣∣∣∣∣−
t∑

i=1

g̃i

∣∣∣∣∣ = |2C2(t− 1)βt − gt|
2C2t

≤ max

{
t− 1

t
βt,

gt
2C2t

}
.

The last inequality is due to βt, gt ≥ 0. Therefore,

x̃t+1 = βt+1Wealtht ≤ max
{
βtWealtht−1, GWealtht−1/(2C

2t)
}

≤ max{2
√
2R̄, G2R̄/(2C2)} ≤ 2

√
2R̄,

where we use the result from Step 1.
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(iii) If βt = 1/(C
√
2(t− 1)), then

x̃t+1 = βt+1Wealtht ≤
1

C
√
2t
Wealtht−1

≤ 1

C
√
2(t− 1)

Wealtht−1 = βtWealtht−1 ≤ 2
√
2R̄.

• Case (1.2) x̃t /∈ V1d, gtx̃t < gtxt.

In this case, g̃t = 0 and Wealtht ≤ Wealtht−1. Same as Case (1.1), βt ̸= 0,

leading to β̂t ≥ 0 and βt = min{β̂t, 1/(C
√

2(t− 1))}. Also note that

∣∣∣β̂t+1

∣∣∣ = 1

2C2t

∣∣∣∣∣−
t∑

i=1

g̃i

∣∣∣∣∣ = 1

2C2t

∣∣∣∣∣−
t−1∑
i=1

g̃i

∣∣∣∣∣ ≤ 1

2C2(t− 1)

∣∣∣∣∣−
t−1∑
i=1

g̃i

∣∣∣∣∣ = ∣∣∣β̂t∣∣∣ .
Therefore,

βt+1 ≤ min

{∣∣∣β̂t+1

∣∣∣ , 1

C
√
2t

}
≤ min

{∣∣∣β̂t∣∣∣ , 1

C
√

2(t− 1)

}
= βt,

and x̃t+1 = βt+1Wealtht ≤ βtWealtht−1 ≤ x̃t ≤ 2
√
2R̄.

• Case (2) x̃t ∈ V1d.

In this case, x̃t = xt and g̃t = gt. x̃t+1 = βt+1Wealtht ≤ (1− gtβt)βt+1Wealtht−1.

If t = 1, then x̃t+1 = βt+1Wealtht ≤
√
2GR̄/C ≤

√
2R̄, where we use Wealth1 ≤

2GR̄ from Step 1 and β2 ≤ 1/(
√
2C).

If t > 1, we consider the three cases of βt as follows. (For the rest of the

discussion assume t > 1.)

(i) If βt = 0, then from Lemma 3.3 we have βt+1 ≤ 2/(Ct), and x̃t+1 ≤
(1− gtβt)βt+1Wealtht−1 = βt+1Wealtht−1 ≤ 2GR̄/C ≤ 2R̄.

(ii) If βt = β̂t = −
∑t−1

i=1 g̃i/[2C
2(t− 1)], then

βt+1 ≤
∣∣∣β̂t+1

∣∣∣ = 1

2C2t

∣∣∣∣∣−
t∑

i=1

g̃i

∣∣∣∣∣ = |2C2(t− 1)βt − gt|
2C2t

≤ t− 1

t
βt +

G

2C2t
.

Note that since x̃t ∈ V1d, we have βtWealtht−1 ≤ R̄. Using x̃t+1 ≤ (1 −
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gtβt)βt+1Wealtht−1 and |gtβt| ≤ 1/2 we have

x̃t+1 ≤
3

2

(
t− 1

t
βtWealtht−1 +

G

2C2t
Wealtht−1

)
≤ 3

2

(
1 +

G2

2C2

)
R̄ ≤ 2

√
2R̄.

(iii) If βt = 1/(C
√

2(t− 1)), then

βt+1 ≤ 1/(C
√
2t) ≤ 1/(C

√
2(t− 1)) = βt,

x̃t+1 ≤ (1− gtβt)βt+1Wealtht−1 ≤ 2βtWealtht−1 ≤ 2R̄.

Step 3 Prove that for all t ≥ 1, Wealtht ≤ 4R̄C
√
t.

Considering βt+1, there are three cases: (1) βt+1 = 1/(C
√
2t); (2) βt+1 = β̂t+1; and

(3) βt+1 = 0. For the first case, this result follows from x̃t+1 = βt+1Wealtht ≤ 2
√
2R̄.

Now consider the second case.

logWealtht ≤ log ε+
t∑

i=1

log(1− g̃iβi)

≤ log ε−
t∑

i=1

g̃iβi

= log ε−
t∑

i=1

(
g̃iβi + C2β2

i

)
+ C2

t∑
i=1

β2
i .

βt is the output of Follow the Leader (FTL) on the strongly convex losses ψt(β) =

g̃tβ + C2β2 + I{0 ≤ β ≤ 1/(C
√
2t)}(β), where I{0 ≤ β ≤ 1/(C

√
2t)}(β) is a convex

function of β that equals 0 when 0 ≤ β ≤ 1/(C
√
2t) and infinity otherwise. Therefore

we can use standard FTL results to show that the regret is non-negative.

Let Ft(β) =
∑t−1

i=1 ψi(β), then βt ∈ argminFt(β). From Lemma 7.1 of (Orabona,

2019), for any u ∈ R,

t∑
i=1

[ψi(βi)− ψi(u)] =
t∑

i=1

[Fi(βi)− Fi+1(βi+1) + ψi(βi)] + Ft+1(βt+1)− Ft+1(u).
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Note that if u = βt+1, we have RHS ≥ 0. Therefore,

logWealtht ≤ log ε− min
0≤β≤1/(C

√
2t)

t∑
i=1

(
g̃iβ + C2β2

)
+ C2

t∑
i=1

β2
i

≤ log ε−min
β∈R

t∑
i=1

(
g̃iβ + C2β2

)
+ C2

t∑
i=1

β2
i

≤ log ε+

(∑t
i=1 g̃i

)2
4C2t

+
1

2

t−1∑
τ=1

τ−1.

The last term is bounded by (1 + log t)/2. From the assumption of the second case,

|
∑t

i=1 g̃i| < C
√
2t. Combining everything we have logWealtht ≤ 1 + log ε+ (log t)/2

and Wealtht ≤ eε
√
t ≤ eR̄C

√
t.

Finally consider the third case. Same as the above, we have

logWealtht ≤ log ε− min
0≤β≤1/(C

√
2t)

t∑
i=1

(
g̃iβ + C2β2

)
+ C2

t∑
i=1

β2
i .

Since βt+1 = 0, we have
∑t

i=1 g̃i ≥ 0. Therefore,

logWealtht ≤ log ε+ C2

t∑
i=1

β2
i ≤ log ε+

1

2
(1 + log t),

and Wealtht ≤
√
eR̄C
√
t.

3.8.2 The second algorithm

Theorem 3.2

Proof of Theorem 3.2. Combining Lemma 2.5, 3.9 and 3.2, we have

T∑
t=1

(gtxt + λ |xt − xt+1|) ≤ −G · Vα(T, ST ).

Consider Vα(T, ST ) as a function of ST ; let us write V
∗
α,T (·) as its Fenchel conjugate.
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Then, in any adversarial environment Env, the augmented regret can be bounded as

RegretλT (Env, u) =
T∑
t=1

gt(xt − u) + λ
T−1∑
t=1

|xt − xt+1|

≤ G · uST +
T∑
t=1

(gtxt + λ |xt − xt+1|)

≤ G [uST − Vα(T, ST )]

≤ G · V ∗
α,T (u).

The last step is to bound V ∗
α,T (u), which also follows from a standard proof strategy.

V ∗
α,T (u) = sup

S∈R
uS − Vα(T, S).

It is clear that the supremum is uniquely achieved; let S∗ be the maximizing argument.

Then,

u = ∇SVα(T, S
∗) = C

S∗/
√
4αT∫

0

exp
(
x2
)
dx.

If we define erfi(z) =
∫ z

0
exp(x2)dx (note that it a scaled version of the conventional

imaginary error function), then S∗ =
√
4αT · erfi−1 (uC−1).

V ∗
α,T (u) = uS∗ − Vα(T, S∗) ≤ uS∗ − Vα(T, 0) = C

√
αT + |u|

√
4αT · erfi−1

(
uC−1

)
.

Finally, as shown in (Zhang et al., 2022b, Theorem 4), erfi−1(x) ≤ 1+
√

log(1 + x).

Combining the above completes the proof.

The proof relies on the following lemmas. We start by proving a few basic properties

of Algorithm 3.2 and the potential function Vα (3.4).

Lemma 3.6. If the potential V (t, S) is even and convex in S, then ∇̄SV (t, S) is odd

and monotonically increasing in S.
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Proof of Lemma 3.6. ∇̄SV (t, S) is odd due to the simple relation

∇̄SV (t,−S) = 1

2
[V (t,−S + 1)− V (t,−S − 1)]

=
1

2
[V (t, S − 1)− V (t, S + 1)]

= −∇̄SV (t, S).

As for the monotonicity, it is equivalent to showing for all δ ≥ 0,

V (t, S + 1 + δ)− V (S − 1 + δ) ≥ V (t, S + 1)− V (S − 1).

This follows from the convexity of V (t, ·), as

V (t, S + 1) ≤ 2

2 + δ
V (t, S + 1 + δ) +

δ

2 + δ
V (t, S − 1),

V (t, S − 1 + δ) ≤ δ

2 + δ
V (t, S + 1 + δ) +

2

2 + δ
V (t, S − 1).

For the potential function Vα, we compute its continuous partial derivatives. The

proof is straightforward calculation, therefore omitted.

Lemma 3.7. For any α > 0, Vα defined in (3.4) is even and convex. Moreover,

∇SVα(t, S) = C

S/
√
4αt∫

0

exp
(
x2
)
dx,

∇SSVα(t, S) =
C

2
√
αt

exp

(
S2

4αt

)
,

∇SSSVα(t, S) =
CS

4(αt)3/2
exp

(
S2

4αt

)
,

∇tVα(t, S) = −
C
√
α

2
√
t
exp

(
S2

4αt

)
.

Based on the above, the discrete derivative ∇̄SVα has the following properties.

Lemma 3.8. For all α > 0, t ≥ 0 and S ≥ 0,

1. ∇̄SVα(t, S) as a function of t is decreasing and convex;
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2. ∇̄SVα(t, S) as a function of S is convex.

Proof of Lemma 3.8. Considering the first part of the lemma,

∇t

[
∇̄SVα(t, S)

]
=

1

2
[∇tVα(t, S + 1)−∇tVα(t, S − 1)]

= −C
√
α

4
√
t
exp

(
S2 + 1

4αt

)
sinh

(
S

2αt

)
,

which, when S ≥ 0, is negative and increasing in t. Therefore, ∇̄SVα(t, S) as a function

of t is decreasing and convex. Similarly,

∇S

[
∇̄SVα(t, S)

]
=

1

2
[∇SVα(t, S + 1)−∇SVα(t, S − 1)] =

C

2

(S+1)/
√
4αt∫

(S−1)/
√
4αt

exp
(
x2
)
dx,

which is increasing in S. Therefore, ∇̄SVα(t, S) as a function of S is convex.

Now, we are ready to prove two key lemmas for Theorem 3.2.

Lemma 3.9. For all α > 0, consider Algorithm 3.2 induced by the potential Vα. For

all t ∈ N+,

|xt − xt+1| ≤ ∇̄SVα(t, St−1 + 1)− ∇̄SVα(t, St−1 − 1).

Proof of Lemma 3.9. First, since ∇̄SVα(t, S) is monotonic in S due to Lemma 3.6, we

have

|xt − xt+1| =
∣∣∇̄SVα(t, St−1)− ∇̄SVα(t+ 1, St)

∣∣
≤ max

c=±1

∣∣∇̄SVα(t, St−1)− ∇̄SVα(t+ 1, St−1 + c)
∣∣ .

For clarity, from the RHS we define

f(t, S) := max
c=±1

∣∣∇̄SVα(t, S)− ∇̄SVα(t+ 1, S + c)
∣∣ .

It is even in S, as

f(t,−S) = max
c=±1

∣∣∇̄SVα(t,−S)− ∇̄SVα(t+ 1,−S + c)
∣∣

= max
c=±1

∣∣−∇̄SVα(t, S) + ∇̄SVα(t+ 1, S − c)
∣∣ (Lemma 3.6)

= max
c=±1

∣∣∇̄SVα(t, S)− ∇̄SVα(t+ 1, S − c)
∣∣ = f(t, S).
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Therefore, we can restrict the rest of the proof to S ≥ 0, and the remaining task is to

upper bound f(t, S) for all 0 ≤ S ≤ t− 1.

From Lemma 3.6 and 3.8,

∇̄SVα(t+ 1, S − 1) ≤ ∇̄SVα(t+ 1, S) ≤ ∇̄SVα(t, S),

∇̄SVα(t+ 1, S − 1) ≤ ∇̄SVα(t+ 1, S + 1).

Therefore, if ∇̄SVα(t+ 1, S − 1) ≤ ∇̄SVα(t, S) ≤ ∇̄SVα(t+ 1, S + 1), then

f(t, S)

= max
{∣∣∇̄SVα(t, S)− ∇̄SVα(t+ 1, S − 1)

∣∣ , ∣∣∇̄SVα(t, S)− ∇̄SVα(t+ 1, S + 1)
∣∣}

≤ ∇̄SVα(t+ 1, S + 1)− ∇̄SVα(t+ 1, S − 1).

On the other hand, if ∇̄SVα(t+ 1, S + 1) ≤ ∇̄SVα(t, S), then

f(t, S) = ∇̄SVα(t, S)− ∇̄SVα(t+ 1, S − 1).

Combining the above,

f(t, S) ≤
max

{
∇̄SVα(t, S)− ∇̄SVα(t+ 1, S − 1), ∇̄SVα(t+ 1, S + 1)− ∇̄SVα(t+ 1, S − 1)

}
.

Our goal next is to upper bound f(t, S) by ∇̄SVα(t, S+1)−∇̄SVα(t, S− 1), which

can be divided into two cases.

Case 1 We aim to show that

∇̄SVα(t, S)− ∇̄SVα(t+ 1, S − 1) ≤ ∇̄SVα(t, S + 1)− ∇̄SVα(t, S − 1),

which is equivalent to

∇̄SVα(t, S − 1)− ∇̄SVα(t+ 1, S − 1) ≤ ∇̄SVα(t, S + 1)− ∇̄SVα(t, S). (3.11)

Note that this trivially holds when 0 ≤ S < 1: due to Lemma 3.8, the RHS is always

positive; however, the LHS is negative due to ∇̄SVα(t, S − 1) being increasing in t

(Lemma 3.6 and 3.8 Part 1). Therefore, we only need to show (3.11) for all S ≥ 1.
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To this end, with S ≥ 1, we apply the convexity of ∇̄SVα from Lemma 3.8:

∇̄SVα(t, S + 1)− ∇̄SVα(t, S) ≥ ∇S

[
∇̄SVα(t, S)

]
,

∇̄SVα(t, S − 1)− ∇̄SVα(t+ 1, S − 1) ≤ −∇t

[
∇̄SVα(t, S − 1)

]
.

Consequently, it suffices to show that

−∇t

[
∇̄SVα(t, S − 1)

]
≤ ∇S

[
∇̄SVα(t, S)

]
.

Now it is time to invoke the specific form of Vα. We may reuse ∇S

[
∇̄SVα(t, S)

]
and ∇t

[
∇̄SVα(t, S)

]
calculated from the proof of Lemma 3.8.

∇S

[
∇̄SVα(t, S)

]
=
C

2

(S+1)/
√
4αt∫

(S−1)/
√
4αt

exp
(
x2
)
dx ≥ C

2
√
αt

exp

(
S2

4αt

)
,

and for all 1 ≤ S ≤ t− 1,

−∇t

[
∇̄SVα(t, S − 1)

]
=
C
√
α

4
√
t
exp

(
(S − 1)2 + 1

4αt

)
sinh

(
S − 1

2αt

)
=
C
√
α

8
√
t
exp

(
S2

4αt

)[
1− exp

(
−S + 1

αt

)]
≤ C
√
α

8
√
t
exp

(
S2

4αt

)[
1− exp

(
− 1

α

)]
(S − 1 ≤ t)

≤ C

8
√
αt

exp

(
S2

4αt

)
. (exp(x) ≥ x+ 1)

Therefore, −∇t

[
∇̄SVα(t, S − 1)

]
≤ ∇S

[
∇̄SVα(t, S)

]
, which proves (3.11) and con-

cludes Case 1.

Case 2 We aim to show that

∇̄SVα(t+ 1, S + 1)− ∇̄SVα(t+ 1, S − 1) ≤ ∇̄SVα(t, S + 1)− ∇̄SVα(t, S − 1).
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This is straightforward, as

∇t

[
∇̄SVα(t, S + 1)− ∇̄SVα(t, S − 1)

]
=

1

2
[∇tVα(t, S + 2) +∇tVα(t, S − 2)− 2∇tVα(t, S)]

= − C
√
α

4
√
t

[
exp

(
(S + 2)2

4αt

)
+ exp

(
(S − 2)2

4αt

)
− 2 exp

(
S2

4αt

)]
≤ 0. (convexity)

Combining the two cases, we can upper bound f(t, S) by ∇̄SVα(t, S + 1) −
∇̄SVα(t, S − 1), which completes the proof.

Lemma 3.2

Proof of Lemma 3.2. We restate the definition of ∆t for easier reference.

∆t =

∇̄tVα(t, St−1) +
1

2
∇̄SSVα(t, St−1) +G−1λ

[
∇̄SVα(t, St−1 + 1)− ∇̄SVα(t, St−1 − 1)

]
.

Let us define a function g(t, S) as

g(t, S) :=
1

2
Vα(t, S + 1) +

1

2
Vα(t, S − 1)− Vα(t− 1, S)

+
λ

2G
[Vα(t, S + 2) + Vα(t, S − 2)− 2Vα(t, S)] ,

then from the definition of discrete derivatives, ∆t = g(t, St−1). Also note that g(t, S)

is even in S, so we can only focus on positive values of S. The rest of the proof will

show g(t, S) ≤ 0 for all t ∈ N+ and S ≥ 0.

Let us start from the special case, t = 1. S can only take the value 0, therefore

g(1, S) = g(1, 0). We now present a general result that upper bounds g(t, 0) for all
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t ∈ N+:

g(t, 0)

=Vα(t, 1)− Vα(t− 1, 0) +G−1λVα(t, 2)−G−1λVα(t, 0)

=C
√
αt

2 1/
√
4αt∫

0

 u∫
0

exp(x2)dx

 du+
2λ

G

1/
√
αt∫

0

 u∫
0

exp(x2)dx

 du+

√
t− 1

t
− 1


≤C
√
αt

 1√
4αt

1/
√
4αt∫

0

exp(x2)dx+
2λ

G
· 1
2
· 1√

αt

1/
√
αt∫

0

exp(x2)dx+

√
t− 1

t
− 1


(erfi(x) is increasing and convex on R+)

≤C
√
αt

[
1

4αt
exp

(
1

4αt

)
+

λ

Gαt
exp

(
1

αt

)
+

√
t− 1

t
− 1

]
.

Since
√
1 + x ≤ 1+ x/2 for all x ≥ −1, we have

√
(t− 1)/t− 1 ≤ −1/(2t). Therefore,

if α ≥ 4λG−1 + 2, then

g(t, 0) ≤ C
√
αt

[
λG−1 + (1/4)

αt
exp

(
1

αt

)
− 1

2t

]
≤ C
√
α√
t

[
λG−1 + (1/4)

α
exp

(
1

2

)
− 1

2

]
≤ 0. (3.12)

As its special case, we have g(1, 0) ≤ 0, which concludes the proof of the special case

(t = 1).

Next, we prove g(t, S) ≤ 0 for general t, i.e., t ≥ 2. Our overall strategy is to show

that for all 0 ≤ S ≤ t − 1, g(t, S) ≤ g(t, 0), and then using the argument above we

have g(t, 0) ≤ 0. Concretely, let us calculate the first and second order derivatives of
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g(t, S), using Lemma 3.7.

∇Sg(t, S)

=
C

2


(S+1)/

√
4αt∫

0

exp(x2)dx+

(S−1)/
√
4αt∫

0

exp(x2)dx− 2

S/
√

4α(t−1)∫
0

exp(x2)dx


+
λC

2G

 (S+2)/
√
4αt∫

0

exp(x2)dx+

(S−2)/
√
4αt∫

0

exp(x2)dx− 2

S/
√
4αt∫

0

exp(x2)dx

 ,

∇SSg(t, S)

=
C

4
√
αt

[
λ

G
exp

(
(S + 2)2

4αt

)
+ exp

(
(S + 1)2

4αt

)
− 2λ

G
exp

(
S2

4αt

)

+ exp

(
(S − 1)2

4αt

)
+
λ

G
exp

(
(S − 2)2

4αt

)]
− C

2
√
α(t− 1)

exp

(
S2

4α(t− 1)

)

=
C

2
√
αt

exp

(
S2

4αt

)[
λ

G
exp

(
1

αt

)
cosh

(
S

αt

)
+ exp

(
1

4αt

)
cosh

(
S

2αt

)

− λ

G
−
√

t

t− 1
exp

(
S2

4αt(t− 1)

)]
. (3.13)

Notice that ∇Sg(t, 0) = 0. To proceed, we aim to prove ∇SSg(t, S) ≤ 0 for all

S ≥ 0, which then shows g(t, S) ≤ g(t, 0). To this end, we will show the sum inside

the bracket in (3.13) is negative. Denote it as h(t, S), and more specifically,

h(t, S) :=
λ

G
exp

(
1

αt

)
cosh

(
S

αt

)
+ exp

(
1

4αt

)
cosh

(
S

2αt

)
− λ

G
−
√

t

t− 1
exp

(
S2

4αt(t− 1)

)
.

The rest of the proof is divided into two steps: we first prove (i) h(t, 0) ≤ 0; and then

prove (ii) ∇Sh(t, S) ≤ 0 for all S ≥ 0.
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Step 1: prove h(t, 0) ≤ 0. From the definition of h(t, S),

h(t, 0) =
λ

G
exp

(
1

αt

)
+ exp

(
1

4αt

)
− λ

G
−
√

t

t− 1
.

Letting x = 1/t, then to prove h(t, 0) ≤ 0 for all t ≥ 2, it suffices to prove

ψ(x) :=
λ

G
exp

(x
α

)
+ exp

( x
4α

)
− λ

G
−
√

1

1− x
≤ 0,

on the range x ∈ (0, 1/2]. ψ(0) = 0, and

∇xψ(x) =
λ

αG
exp

(x
α

)
+

1

4α
exp

( x
4α

)
− 1

2
(1− x)−3/2 ≤ 4λG−1 + 1

4α
exp

(
1

2α

)
− 1

2
,

which is negative when α ≥ 4λG−1 + 2. Therefore, h(t, 0) ≤ 0 for all t ≥ 2.

Step 2: prove ∇Sh(t, S) ≤ 0. Taking the derivative of h(t, S),

∇Sh(t, S) =
λ

αtG
exp

(
1

αt

)
sinh

(
S

αt

)
+

1

2αt
exp

(
1

4αt

)
sinh

(
S

2αt

)
−
√

t

t− 1
· S

2αt(t− 1)
exp

(
S2

4αt(t− 1)

)
≤
(

λ

αtG
+

1

2αt

)
exp

(
1

αt

)
sinh

(
S

αt

)
− S

2αt2

√
t

t− 1
.

Note that for all x, exp(−x) ≥ 1 − x, therefore for all 0 ≤ x < 1, exp(x/2) ≤√
1/(1− x). Assigning x to 1/t which is less than 1, we have for all α ≥ 2,

exp

(
1

αt

)
≤ exp

(
1

2t

)
≤
√

t

t− 1
.

Moreover, for all 0 ≤ x ≤ 1, sinh(x) ≤ 2x. Therefore,

∇Sh(t, S) ≤
√

t

t− 1

[
λG−1 + (1/2)

αt
sinh

(
S

αt

)
− S

2αt2

]
≤ S

α2t2

√
t

t− 1

[
2λG−1 + 1− α

2

]
.

When α ≥ 4λG−1 + 2, ∇Sh(t, S) ≤ 0 for all t ≥ 2 and S ≥ 0.
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Concluding the above two steps, we have shown h(t, S) ≤ 0. Plugging it back

into (3.13), we have ∇SSg(t, S) ≤ 0, which shows that for all t ≥ 2 and S ≥ 0,

g(t, S) ≤ g(t, 0). Finally, g(t, 0) ≤ 0 following (3.12).

Theorem 3.3

Proof of Theorem 3.3. The first part of the theorem directly follows from (Cutkosky,

2020, Theorem 2) and the contraction property of 1D projections. As for the second

part, we divide the proof into five steps.

Step 1: the “concentration” of St Without loss of generality, assume St−1 ≥ 0.

Considering the prediction x̃t = ∇̄SVα(t, St−1) of the unconstrained base algorithm,

there are two cases.

• Case 1: x̃t ≤ D. Due to convexity,

x̃t = ∇̄SVα(t, St−1)

= C
√
αt

(St−1+1)/
√
4αt∫

(St−1−1)/
√
4αt

 u∫
0

exp(x2)dx

 du ≥ C

St−1/
√
4αt∫

0

exp(x2)dx.

Similar to the proof of Theorem 3.2, if we define erfi(z) =
∫ z

0
exp(x2)dx, then

St−1 ≤
√
4αt · erfi−1(DC−1). As for the next round, |St| ≤ St−1 + |gt| /G ≤√

4αt · erfi−1(DC−1) + 1.

• Case 2: x̃t > D. In this case, since x∗ ∈ X , we have x̃t + x∗ larger than the

maximum element of X , leading to x̃t + x∗ > xt. Due to the definition of the

surrogate loss, g̃t ≥ 0. Therefore, |St| ≤ max{|St−1| , |g̃t/G|} ≤ max{|St−1| , 1}.

Combining the two cases and their analogous arguments for St−1 ≤ 0, we can

see that for all t, |St| ≤ max
{√

4αt · erfi−1(DC−1) + 1, |St−1| , 1
}
. By induction, we

obtain for all t,

|St| ≤
√
4αt · erfi−1(DC−1) + 1.
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Step 2: bounding the switching cost using St Still, assume St−1 ≥ 0 without

loss of generality. From Lemma 3.9,

|xt − xt+1|
≤ ∇̄SVα(t, St−1 + 1)− ∇̄SVα(t, St−1 − 1)

= C
√
αt

 (St−1+2)/
√
4αt∫

St−1/
√
4αt

 u∫
0

exp(x2)dx

 du−
St−1/

√
4αt∫

(St−1−2)/
√
4αt

 u∫
0

exp(x2)dx

 du


≤ C

√
αt

 2√
4αt

(St−1+2)/
√
4αt∫

0

exp(x2)dx− 2√
4αt

(St−1−2)/
√
4αt∫

0

exp(x2)dx


= C

(St−1+2)/
√
4αt∫

(St−1−2)/
√
4αt

exp(x2)dx ≤ 2C√
αt

exp

(
(St−1 + 2)2

4αt

)
.

Step 3: plug in the concentration of St Next, we use the upper bound on St−1

to show that |xt − xt+1| = O(Ct−1/2 exp[(erfi−1(DC−1))2]). To this end, we discuss

two cases regarding how the “concentration” bound (i.e., O(
√
t)) compares to the

trivial bound (i.e., St ≤ t).

• Case 1:
√
4αt · erfi−1(DC−1) ≥ t. In this case, note that St−1 + 1 ≤ t and

α ≥ 2,

|xt − xt+1| ≤
2C√
αt

exp

(
(St−1 + 2)2

4αt

)
=

2C√
αt

exp

(
S2
t−1

4αt

)
exp

(
4St−1 + 4

4αt

)
≤ 2
√
eC√
αt

exp

(
S2
t−1

4αt

)
.

Since
√
4αt · erfi−1(DC−1) ≥ t, we have t ≤ 4α(erfi−1(DC−1))2. Therefore,

exp

(
S2
t−1

4αt

)
≤ exp

(
t

4α

)
≤ exp

[(
erfi−1(DC−1)

)2]
,

|xt − xt+1| ≤
2
√
eC√
αt

exp
[(
erfi−1(DC−1)

)2]
.

• Case 2:
√
4αt · erfi−1(DC−1) < t. Plugging the O(

√
t) bound for St−1 into
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|xt − xt+1|,

|xt − xt+1| ≤
2C√
αt

exp

(
(
√

4α(t− 1) · erfi−1(DC−1) + 3)2

4αt

)

≤ 2C√
αt

exp
[(
erfi−1(DC−1)

)2]
exp

(
6t+ 9

4αt

)
≤ 2e2C√

αt
exp

[(
erfi−1(DC−1)

)2]
.

Combining the above, we have

|xt − xt+1| ≤
2e2C√
αt

exp
[(
erfi−1(DC−1)

)2]
.

Step 4: upper-bound exp[(erfi−1(x))2]. Let us consider the related
∫ x

0
erfi(u)du.

Using integration by parts,

x∫
0

erfi(u)du = u · erfi(u)
∣∣∣∣x
u=0

−
x∫

0

u exp(u2)du

= x · erfi(x)− 1

2
exp(x2) +

1

2
.

Plugging in x = erfi−1(DC−1), we have

exp
[(
erfi−1(DC−1)

)2]
= 2DC−1 · erfi−1(DC−1) + 1− 2

erfi−1(DC−1)∫
0

erfi(u)du

≤ 2DC−1 · erfi−1(DC−1) + 1.

Then, as we did in Theorem 3.2, we plug in erfi−1(x) ≤ 1 +
√
log(1 + x) and obtain

|xt − xt+1| ≤
11√
t

{
2D
[
1 +

√
log(1 +DC−1)

]
+ C

}
.

Step 5: final bits. Note that

T2−1∑
t=T1

1√
t
≤

T2−1∫
T1−1

1√
x
dx ≤ 2

√
T2 − 1− 2

√
T1 − 1 ≤ 2

√
T2 − T1.
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Combining it with our bound on |xt − xt+1| completes the proof.

3.8.3 The expert problem

Theorem 3.5 The proof relies on an auxiliary lemma (Lemma 3.10), which is

presented at the end.

Proof of Theorem 3.5. We divide the proof into three steps.

Step 1 The first step is to show that (i) for all u ∈ ∆(d), ⟨gt, xt − u⟩ ≤ ⟨zt, wt − u⟩;
and (ii) ∥xt − xt+1∥1 ≤ O(∥wt − wt+1∥1). In this way, we can translate the LEA

problem to a d-dimensional OLO problem with the loss vector zt, despite not achieving

the root KL bound yet.

To prove the goal (i), we consider two cases, ∥wt∥1 < 1 and ∥wt∥1 > 1 (the case

of ∥wt∥1 = 1 trivially holds). If ∥wt∥1 < 1, we have xt = wt + d−1(1 − ∥wt∥1) and
zt = gt − ∥gt∥∞.

⟨gt, xt − u⟩ = ⟨gt, wt − u⟩+ (1− ∥wt∥1)

(∑
i

gt,i/d

)
,

⟨zt, wt − u⟩ = ⟨gt, wt − u⟩+ (1− ∥wt∥1) ∥gt∥∞ ,

therefore ⟨gt, xt − u⟩ ≤ ⟨zt, wt − u⟩. As for the case of ∥wt∥1 > 1, similarly, xt =

wt/ ∥wt∥1, zt = gt + ∥gt∥∞, ⟨gt, xt − u⟩ = ⟨gt, wt/ ∥wt∥1 − u⟩, and ⟨zt, wt − u⟩ =

⟨gt, wt − u⟩+ ∥gt∥∞ (∥wt∥1 − 1).

⟨gt, xt − u⟩ − ⟨zt, wt − u⟩ = − (⟨gt, xt⟩+ ∥gt∥∞) (∥wt∥1 − 1) ≤ 0.

Now consider the goal (ii). To avoid cluttered notations, define at = wt +

d−1max{0, 1− ∥wt∥1} and At = max{∥wt∥1 , 1}. Note that At = ∥at∥1.

∥xt − xt+1∥1 =
∥∥∥∥ atAt

− at+1

At+1

∥∥∥∥
1

=

∥∥∥∥(at − at+1)At+1 + at+1(At+1 − At)

AtAt+1

∥∥∥∥
1

≤ 1

At

∥at − at+1∥1 +
1

At

(At+1 − At) ≤ 2 ∥at − at+1∥1 .
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∥at − at+1∥1 =
∥∥wt + d−1max{0, 1− ∥wt∥1} − wt+1 − d−1max{0, 1− ∥wt+1∥1}

∥∥
1

≤ ∥wt − wt+1∥1 + |max{0, 1− ∥wt∥1} −max{0, 1− ∥wt+1∥1}|
≤ ∥wt − wt+1∥1 + |∥wt∥1 − ∥wt+1∥1| ≤ 2 ∥wt − wt+1∥1 .

Therefore, ∥xt − xt+1∥1 ≤ 4 ∥wt − wt+1∥1.

Step 2 The second step is to add up the regret bound for each coordinates. Consider

the i-th coordinate. Note that |zt,i| ≤ 2G. Using Theorem 3.3, for all u1d ∈ R+,

T∑
t=1

zt,i(wt,i − u1d) + λ̃

T−1∑
t=1

|wt,i − wt+1,i|

≤
√
(4λ̃G̃+ 2G̃2)T

[
πi + |u1d − πi|

(√
4 log

(
1 +
|u1d − πi|

πi

)
+ 2

)]

=
√

(32λG+ 8G2)T

[
πi + |u1d − πi|

(√
4 log

(
1 +
|u1d − πi|

πi

)
+ 2

)]
.

Then, by summing up all the coordinates, for all u ∈ ∆(d),

T∑
t=1

⟨gt, xt − u⟩+ λ
T−1∑
t=1

∥xt − xt+1∥1

≤
T∑
t=1

⟨zt, wt − u⟩+ 4λ
T−1∑
t=1

∥wt − wt+1∥1

=
d∑

i=1

[
T∑
t=1

zt,i(wt,i − ui) + λ̃

T−1∑
t=1

|wt,i − wt+1,i|

]

≤
√
(32λG+ 8G2)T

[
1 + 2 ∥u− π∥1 + 2

d∑
i=1

|ui − πi|

√
log

(
1 +
|ui − πi|

πi

)]
≤
√
(32λG+ 8G2)T

×

1 + 2 ∥u− π∥1 + 2
√
∥u− π∥1

√√√√ d∑
i=1

|ui − πi| log
(
1 +
|ui − πi|

πi

) .
(Cauchy-Schwarz)
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Observe that since u and π both belong to ∆(d), ∥u− π∥1 ≤ 2. If we define a function

f as

f := |x− 1| log(1 + |x− 1|),

then using the standard definition of f-divergence

Df (u||π) :=
d∑

i=1

πif

(
ui
πi

)
,

we have

RegretλT (u) =

[√
TV(u||π) ·Df (u||π) + 1

]
·O
(√

(λG+G2)T
)
.

Step 3 The last step is to upper bound Df (u||π) by KL(u||π). To this end, notice

that KL(u||π) = Dg(u||π), where

g(x) := 1− x+ x log x.

By Lemma 3.10, f(x) ≤ 2g(x) for all x ≥ 0, therefore Df(u||π) ≤ 2Dg(u||π) =

2KL(u||π).

Lemma 3.10. For all x ≥ 0,

|x− 1| log(1 + |x− 1|) ≤ 2(1− x+ x log x).

Proof of Lemma 3.10. Define LHS− RHS as h(x). Clearly, h(1) = 0. When x > 1,

h′(x) = 1− log x− x−1.

It equals 0 when x = 1, and h′′(x) = (1 − x)/x2 which is negative for all x > 1.

Therefore, h(x) ≤ 0 for all x ≥ 1.

As for the case of x < 1,

h′(x) = − log(2− x)− 1− x
2− x

− 2 log x,

h′′(x) = −x
2 − x+ 2

(x− 2)2x
< 0,

therefore h(x) ≤ 0 for all 0 ≤ x ≤ 1.
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Regarding Theorem 3.5, to justify the improvement of
√
TV ·KL over

√
KL, here

is an example.

Example 3.1. For all d ≥ 3, define p, q ∈ ∆(d) from

p1 =
1√
log d

, q1 =
1

d
√
log d

,

and

pi =
1− p1
d− 1

, qi =
1− q1
d− 1

, ∀i ∈ [2 : d].

Then,

TV(p||q) = 1

2

[
|p1 − q1|+ (d− 1)

∣∣∣∣1− p1d− 1
− 1− q1
d− 1

∣∣∣∣] = |p1 − q1| = d− 1

d
√
log d

,

KL(p||q) = p1 log
p1
q1

+ (d− 1) · 1− p1
d− 1

log
1− p1
1− q1

=
√

log d+

(
1− 1√

log d

)
log

(
1− d− 1

d
√
log d− 1

)
≥
√

log d+ log

(
1− d

d
√
log d− 1

)
=
√

log d− o(1).

Since we also have

KL(p||q) =
√

log d+ (1− p1) log
1− p1
1− q1

≤
√
d,

we can combine the above and obtain TV(p||q) ·KL(p||q) ≤ 1 and KL(p||q) ≥
√
log d−

o(1). If our comparator u and prior π take the value of p and q respectively, then

even without switching costs, Theorem 3.5 saves a (log d)1/4 factor from the existing

comparator adaptive bounds, e.g., (Orabona, 2019, Section 9.6).
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Chapter 4

Unconstrained Dynamic Regret

Moving to the second part of the dissertation, we shift our attention from temporal

continuity to temporal representation. The overarching idea is that the use of time-

dependent features can bring some surprising benefits to adaptive online learning.

This is based on (Zhang et al., 2023).

Concretely, we will study the dynamic regret (1.1) in OCO, rather than the static

regret considered in previous chapters. Furthermore, the domain X is unconstrained,

i.e., X = Rd. This will unify two types of adaptivity discussed in Section 1.4 (Type 1

and Type 3), under a generalized notion of comparator adaptivity.

Section 4.1 motivates the problem and summarizes our contributions. Section 4.2

surveys existing results. Section 4.3 introduces the general algorithmic framework

achieving a sparsity adaptive dynamic regret bound. Section 4.4 specialized this general

framework using the Haar wavelet features, resulting in quantitative improvements

over the state of the art. An application to fine-tuning time series forecasters, including

experiments, are presented in Section 4.5. Section 4.6 concludes this chapter and

discusses future directions. All the proofs are deferred to Section 4.7.

Setting The setting of this chapter is in some sense the most challenging one

considered this dissertation. We study the OCO problem (Definition 1) with the

domain X = Rd, and the loss functions are G-Lipschitz with respect to the Euclidean

norm. The time horizon T is in general unknown unless specified otherwise. The
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performance metric is the dynamic regret (1.1), copied as

RegretT (Env, u1:T ) :=
T∑
t=1

lt(xt)−
T∑
t=1

lt(ut).

Our goal is to upperbound its supremum over Env, i.e.,

RegretT (u1:T ) := sup
Env

[
T∑
t=1

lt(xt)−
T∑
t=1

lt(ut)

]
, (4.1)

by a function of u1:T . Specifically, there are no restrictions on the comparator at all:

for all t, ut ∈ Rd. Therefore, this objective is called the unconstrained dynamic regret.

Notation Our results will depend on suitable statistics to quantify the regularity of

a comparator sequence u1:T . Several such statistics are defined throughout this chapter,

which are summarized in Table 4.1. This is mainly for the purpose of reference. These

statistics will be motivated and introduced carefully as we proceed.

Name Notation Definition

Maximum range M maxt ∥ut∥

Comparator average ū 1
T

∑T
t=1 ut

Path length P
∑T−1

t=1 ∥ut+1 − ut∥2
Norm sum S

∑T
t=1 ∥ut∥2

First order variability S̄
∑T

t=1 ∥ut − ū∥2
Energy E

∑T
t=1 ∥ut∥

2
2

Second order variability Ē
∑T

t=1 ∥ut − ū∥
2
2

Number of switches K
∑T−1

t=1 1[ut+1 ̸= ut]

Sparsity on a dictionary H SparsityH
(
∑N

n=1∥z(n)∥
2
)2∑N

n=1∥z(n)∥2
2

Table 4.1: List of comparator statistics.

Furthermore, the types of norms will be important throughout our analysis. There-



129

fore, unlike Chapter 2, we will write the Euclidean norm as ∥·∥2, rather than the

suppressed notation ∥·∥.

4.1 Motivation and contribution

Our setting above deviates from the most standard setting of OCO in two ways:

the domain Rd is unbounded, and the comparator is allowed to be time-varying.

Taking a closer look at their analysis, one could see that these two problem structures

actually share a common theme, despite being studied mostly separately. In either

the unconstrained static setting (McMahan and Orabona, 2014; Orabona and Pál,

2016; Cutkosky and Orabona, 2018) or the bounded dynamic setting (Zinkevich, 2003;

Hall and Willett, 2015; Zhang et al., 2018a), the standard form of minimax optimality

(Abernethy et al., 2008a, 2009; Rakhlin and Sridharan, 2014b) becomes vacuous, as it

is impossible to guarantee that supu1:T
RegretT (u1:T ) is sublinear in T . Circumventing

this issue in either cases relies on comparator adaptivity1 – instead of only depending

on T , any appropriate regret upper bound, denoted by BoundT (u1:T ), should also

depend on the comparator u1:T through a certain complexity measure. Intuitively,

despite the intractability of hard comparators, nonvacuous bounds can be established

against “easy ones”. A total loss bound then follows from the oracle inequality

T∑
t=1

lt(xt) ≤ inf
u1:T

[
T∑
t=1

lt(ut) + BoundT (u1:T )

]
. (4.2)

A crucial observation is that the complexity of u1:T is not uniquely defined: one

could imagine bounding RegretT (u1:T ) by many different non-comparable functions

of u1:T . Essentially, this complexity measure serves as a Bayesian prior (Section 1.3):

choosing it amounts to assigning different priorities to different comparators u1:T ∈

Rd×T . The associated algorithm guarantees lower BoundT (u1:T ) against comparators

1Here it should be interpreted as a more general, dynamic version of the Type 1 discussed in
Section 1.4.
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with higher priority, and due to (4.2), the total loss of our algorithm is low if some of

these high priority comparators actually achieve low loss
∑T

t=1 lt(ut). Such a Bayesian

reasoning highlights the importance of versatility in this workflow: in order to place

an arbitrary application-dependent prior, we need a versatile algorithmic framework

that adapts to a wide range of complexity measures. This leads to the limitations of

existing results, discussed next.

To our knowledge, (Jacobsen and Cutkosky, 2022) is the only existing work that

considers our setting. Two unconstrained dynamic regret bounds are presented based

on three statistics of the comparator sequence, the maximum range M := maxt ∥ut∥2,

the norm sum S :=
∑T

t=1 ∥ut∥2 and the path length P :=
∑T−1

t=1 ∥ut+1 − ut∥2. First,

using a 1D unconstrained static algorithm as a simple range scaler, the paper achieves

(Jacobsen and Cutkosky, 2022, Lemma 10)

RegretT (u1:T ) ≤ Õ
(√

(M + P )MT
)
, (4.3)

Then, by developing a customized mirror descent approach, most of the effort is

devoted to improving MT to S (Jacobsen and Cutkosky, 2022, Theorem 4), i.e.,

adapting to the magnitude of individual ut.

RegretT (u1:T ) ≤ Õ
(√

(M + P )S
)
. (4.4)

Despite the strengths of these results and their nontrivial analysis, a shared

limitation is that both bounds depend explicitly on the path length P . Intuitively, it

means that good performance is only guaranteed in almost static environments: in the

typical situation of S = Θ(T ), these bounds are only sublinear when P = o(T ), which

rules out important persistent dynamics such as periodicity. Moreover, even the second

bound still depends on
√
MS instead of a finer characterization of each individual
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ut’s magnitude. That is, the mission of improving M is not fully accomplished yet.2

The goal of this chapter is to extend comparator adaptivity to a wider range

of complexity measures. For almost static environments in particular, quantitative

benefits will be obtained from specific instances of this general approach.

Result and contribution Our contributions are twofold.

1. First, we present an algorithmic framework achieving a new type of unconstrained

dynamic regret bounds. It is based on a conversion to vector-output Online

Linear Regression (OLR): given a dictionary H of orthogonal feature vectors

in the sequence space RdT , we use an unconstrained static OCO algorithm

to linearly aggregate these feature vectors, which are themselves time-varying

prediction sequences. Such a procedure guarantees

RegretT (u1:T ) ≤ Õ
(√

E · SparsityH
)
, (4.5)

where E =
∑T

t=1 ∥ut∥
2
2 is the energy of the comparator u1:T , and SparsityH

measures the sparsity of u1:T on the dictionary H.3 Both E and SparsityH are

unknown beforehand.

Compared to (Jacobsen and Cutkosky, 2022), the main advantage of this frame-

work is its versatility. Prior knowledge on the transform domain can be incorpo-

rated by picking H, and favorable algorithmic properties can be conveniently

inherited from static online learning.

2The significance of this issue could be seen through an analogy to (static D-bounded do-
main) gradient adaptive OCO: although there are algorithms achieving the already adaptive

O

(
D
√
G
∑T

t=1 ∥gt∥2

)
static regret bound, the hallmark of gradient adaptivity is the so-called

“second-order bound” O

(
D
√∑T

t=1 ∥gt∥
2
2

)
, popularized by AdaGrad Duchi et al. (2011). In a

rough but related sense, we aim to achieve “second order comparator adaptivity”, which is only
manifested in the less studied dynamic setting.

3For conciseness, we omit u1:T in the notation. Throughout this chapter, the regularity parameters
on the RHS of the regret bound generally depend on u1:T .
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Algorithm P -dependent bound K-switching regret Example 4.1 Example 4.2

Ader (Zhang et al., 2018a) Õ
(√

(D + P )DT
)

Õ
(
D
√
(1 +K)T

)
N/A Õ(T 3/4)

(Jacobsen and Cutkosky, 2022, Algorithm 6) Õ
(√

(M + P )MT
)

Õ
(
M
√
(1 +K)T

)
Õ(T ) Õ(T 3/4)

(Jacobsen and Cutkosky, 2022, Algorithm 2) Õ
(√

(M + P )S
)

Õ
(√

(1 +K)MS
)

Õ(T 3/4) Õ(T 3/4)

Ours (Haar OLR) Õ
(
∥ū∥2

√
T +
√
PS̄
)

Õ
(
∥ū∥2

√
T +
√
KĒ

)
Õ(
√
T ) Õ(

√
T )

Table 4.2: Comparison in almost static environments. Each row im-
proves the previous row (omitting logarithmic factors). The Ader
algorithm requires a D-bounded domain, while the other three algo-
rithms are unconstrained. The rates in the two examples refer to the
minimum of the P and K dependent bounds.

2. Our second contribution is quantitative: although (Jacobsen and Cutkosky,

2022) is specifically crafted to handle almost static environments, we show that

equipped with a Haar wavelet dictionary, our framework actually guarantees

better bounds (Table 4.2) in this setting, which is a surprising finding to us.

• With the comparator average ū :=
∑T

t=1 ut/T and the first order variability

S̄ :=
∑T

t=1 ∥ut − ū∥2, our Haar wavelet algorithm guarantees

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
.

It improves Eq.(4.4) by (i) a better dependence on the comparator magnitude

(
√
MS → ∥ū∥2

√
T ); and (ii) decoupling the bias ū from the characterization

of variability (
√
PS →

√
PS̄).

• With the number of switches K :=
∑T−1

t=1 1[ut+1 ̸= ut] and the second order

variability Ē :=
∑T

t=1 ∥ut − ū∥
2
2, the same Haar wavelet algorithm guarantees

an anytime unconstrained switching regret bound

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
,

which improves the existing Õ
(√

(1 +K)MS
)
bound resulting from Eq.(4.4)

and P = O(KM).
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Due to the local property of wavelets, our algorithm runs in O(d log T ) time per

round, matching that of the baselines. As for the regret, our bounds are never

worse than the baselines, and in two examples corresponding to ∥ū∥2 ≪M and

S̄ ≪ S, they reduce to clearly improved rates in T . Furthermore, our analysis

follows from the generic regret bound (4.5) and the wavelet approximation theory,

providing an intriguing connection between disparate fields.

4.2 Related work

Tackling unconstrained dynamic regret requires addressing the connection between

unconstrained OCO and dynamic OCO. Although they both embody the idea of

comparator adaptivity, unified studies have been scarce. For related works on uncon-

strained OCO, the reader is referred to Section 2.2. Here we survey related works on

the dynamic aspects of online learning.

Dynamic OCO Comparing against dynamic sequences is a classical research topic.

It is clear that one cannot go beyond linear regret in the worst case, therefore various

notions of complexity should be introduced.

• The closest topic to ours is the universal dynamic regret, where the regret bound

adapts to the complexity of an arbitrary u1:T on a bounded domain with Lp-

diameter D. In the most common framework, the complexity measure is an Lp,q

norm of the difference sequence {ut+1− ut}, such as the Lp,1 norm, i.e., the path

length P =
∑T−1

t=1 ∥ut+1 − ut∥p (Herbster and Warmuth, 2001). Omitting the

dependence on the dimension d (thus also the choice of p), the optimal bound

under convex Lipschitz losses is Õ
(√

(D + P )DT
)
(Zinkevich, 2003; Hall and

Willett, 2015; Jadbabaie et al., 2015; Gyorgy and Szepesvári, 2016; Zhang et al.,

2018a), while the accelerated rate4 Õ(P 2/3T 1/3 ∨ 1) can be achieved with strong

4Further omitting the dependence on the diameter D.
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convexity (Baby and Wang, 2021, 2022). These bounds subsume results in

switching (or shifting) regret, as P is dominated by D times the number of

switches in u1:T .

A notable exception is the dynamic model framework from (Hall and Willett,

2015; Zhang et al., 2018a). Still considering a bounded domain, it takes a

collection of dynamic models as input, which are mappings from the domain to

itself. Then, the complexity of a comparator u1:T is measured by how well it can

be reconstructed by the best dynamic model in hindsight. Essentially, the use of

temporal representations is similar to the dictionary in our framework. The key

difference is that instead of using the best feature (or the best convex combination

of the features) to measure the comparator, we use linear combinations of

the features – this allows handling unconstrained domains through subspace

modeling.

• Besides the universal dynamic regret, there are other notions of dynamic regret

that do not induce oracle inequalities like (4.2), including (i) the restricted

dynamic regret (Yang et al., 2016; Zhang et al., 2017; Baby and Wang, 2019,

2020; Baby et al., 2021), which depends on the complexity of certain offline

optimal comparators;5 and (ii) regret bounds that depend on the functional

variation
∑T−1

t=1 maxx |lt(x)− lt+1(x)| (Besbes et al., 2015; Chen et al., 2019).

They are not as relevant to our purpose, due to being vacuous on unbounded

domains under the linear losses – this is an important setting in our investigation.

Unconstrained (universal) dynamic regret To our knowledge, (Jacobsen and

Cutkosky, 2022) is the only work studying the universal dynamic regret without a

5Notably, (Baby and Wang, 2019, 2020) creatively employed wavelet techniques to detect change-
points of the environment, which, to the best of our knowledge, is the only existing use of wavelets in
the online learning literature.
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bounded domain, whose contributions have been summarized in Section 4.1. Here we

survey some negative results in the literature, which will be revisited later on.

• The restricted dynamic regret is a special case of the universal dynamic regret,

therefore lower bounds for the former apply to the latter as well. For convex

Lipschitz losses (Yang et al., 2016) and strongly convex losses (Baby and Wang,

2019), any algorithm should suffer the dynamic regret of Ω(P ) and Ω(P 2),

respectively.

• For dynamic OCO on bounded domains, a recurring analysis goes through the

notion of strong adaptivity (Daniely et al., 2015), i.e., Type 4 in Section 1.4:

one first achieves low static regret bounds on every subinterval of the time

horizon [1 : T ], and then assembles these local bounds appropriately to bound

the global dynamic regret (Zhang et al., 2018b; Cutkosky, 2020; Baby and Wang,

2021, 2022). Following this route in the unconstrained setting appears to be

challenging, as (Jacobsen and Cutkosky, 2022, Section 4) showed that (a natural

form of) strong adaptivity cannot be achieved there.

Besides these “core” related works, the following topics are also relevant.

Online regression Our sparse coding framework converts unconstrained dynamic

OCO to a special form of online regression. The standard setting of the latter (Rakhlin

and Sridharan, 2014a) considers a repeated game as well: in each round, we observe a

covariate xt ∈ Rd, make a prediction ŷt ∈ R (which depends on xt), and then observe

a label yt ∈ R. The performance metric is the minimax regret under the square loss

RegretT (F) =
T∑
t=1

(ŷt − yt)2 − inf
f∈F

T∑
t=1

(f(xt)− yt)2.

Roughly, the problem is of a nonparametric type if the complexity of the function

class F is not fixed a priori, but grows with T (i.e., the amount of data).
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Overall, such an online regression problem is highly general, as static OCO is

recovered if xt is time-invariant. The setting we utilize is a variant with (i) vector

output; (ii) general convex losses; (iii) xt specified by the dictionary, possibly being

sparse itself (e.g., wavelets); and (iv) the function class F being linear, but unbounded.

Existing works on online nonparametric regression (Rakhlin and Sridharan, 2014a;

Gaillard and Gerchinovitz, 2015) have established the relation of this problem to

certain path length characterizations of dynamic regret. However, the generality

of this setting makes the analysis challenging, and especially, algorithms can be

computationally expensive. With a bounded domain assumption (on predictions ŷt), a

recent breakthrough (Baby and Wang, 2021) simultaneously achieved several notions

of optimality for path-length-dependent bounds, with efficient computation. Readers

are referred to (Baby and Wang, 2021, Appendix A) for a thorough discussion of this

line of works.

For the special case of OLR with square losses, the celebrated VAW forecaster

(Azoury and Warmuth, 2001; Vovk, 2001) guarantees O(N log T ) regret against any

unbounded coefficient vector û ∈ RN , where N is the dimension of the feature

space. Such a fast rate becomes vacuous in the nonparametric regime (when N > T )

(Gerchinovitz and Yu, 2014), therefore Gerchinovitz (2013) proposed a sparsity regret

bound Õ(∥û∥0) and an accompanying inefficient algorithm as its high dimensional

generalization. Efficient computation was addressed by (Gaillard and Wintenberger,

2018), but the obtained result only applies to bounded û. In a rough sense, such

sparsity regret bounds are the square loss analogues of the L1-norm parameter-free

bounds in OLO (Orabona, 2019, Chapter 9). They are also closely related to sparsity

oracle inequalities in statistics, as reviewed by (Gerchinovitz, 2013).

Parametric time series models For time series forecasting, most prior works are

devoted to parametric strategies with strong inductive bias, such as the ARMA model,
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state space models, and more recent deep learning models. Online learning has been

applied to such models as well (Anava et al., 2013, 2015b; Anava and Mannor, 2016;

Kuznetsov and Mohri, 2016; Hazan et al., 2018), leading to forecasting guarantees

under mild statistical assumptions. When convexity is present, some of these problems

could be reframed as special cases of our OLR problem, with a constant-size dictionary

that does not grow with T ; for example, learning the autoregressive model corresponds

to defining the features as the fixed-length observation history. Also, Section 4.5

shows that given a parametric time series forecaster (possibly without performance

guarantees), our algorithm can be applied on top of it, in order to provably correct its

nonstationary bias.

Other sparsity topics in OL Finally, we review other sparsity-related topics in

online learning, which do not fit into the scope of this chapter. (Langford et al., 2009;

Xiao, 2009; Duchi et al., 2010; Shalev-Shwartz and Tewari, 2011) considered using

online learning to solve batch L1 regularized problems. The goal is to achieve sparse

predictions instead of sparsity adaptive regret bounds. (Kale, 2014; Foster et al., 2016;

Kale et al., 2017) studied online sparse regression, where only a subset of features are

available in each round. The challenge is to handle bandit feedback in OLR.

4.3 General sparse coding framework

This section presents our sparse coding framework, achieving the generic sparsity

adaptive regret bound (4.5). The key idea is to view online learning on the sequence

space RdT , rather than the default domain Rd. Despite its central role in signal

processing (e.g., the Fourier transform), such a view is (in our opinion) under-explored

by the online learning community.6 Along this line, Section 4.3.1 converts our setting

6Possibly due to the emphasis on the static regret: the sequence u1:T collapses into a time-invariant
u, which is contained in Rd.
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into a variant of OLR. Our main result and related discussions are presented in

Section 4.3.2.

4.3.1 Setting

To begin with, we adopt the conversion from OCO to OLO from Section 1.1. Then,

consider the length T sequences of predictions x1:T , gradients g1:T and comparators u1:T .

Let us flatten everything and treat them as dT dimensional vectors, concatenating

per-round quantities in Rd. These are called signals. The comparator statistics

could be more succinctly represented using vector notations, e.g., the energy E =∑T
t=1 ∥ut∥

2
2 = ∥u1:T∥

2
2.

Our framework requires a dictionary matrix H ∈ RdT×N , possibly revealed online,

whose columns are N nonzero feature vectors. We write H in an equivalent block form

as [ht,n]1≤t≤T,1≤n≤N , where each block ht,n ∈ Rd×1. The accompanied linear transform

u = Hû relates a signal u ∈ RdT to a coefficient vector û ∈ RN (if it exists). Adopting

the convention in signal processing, we will call RdT the time domain, and RN the

transform domain. In general, symbols without hat refer to time domain quantities,

while their transform domain counterparts are denoted with hat.

Summarizing the above, we consider the following concise interaction protocol.7

Despite its parametric appearance, our main focus is on the nonparametric regime,

where the dictionary size N scales with the amount of data T .

Vector-output OLR with linear losses In the t-th round, our algorithm observes

a d-by-N feature matrix Ht := [ht,n]1≤n≤N , linearly combines its columns into a

prediction xt ∈ Rd, receives a loss gradient gt ∈ Rd, and then suffers the linear

7Rigorously, this setting is not exactly “regression”, since the loss function is the relaxed linear
loss. A more accurate name could be “Online Linear Decision”. We use “OLR” as it is arguably
easier to interpret.
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loss ⟨gt, xt⟩. We assume that8 ∥ht,n∥2 ≤ 1,
∑T

t=1 ∥ht,n∥
2
2 ≥ 1 and ∥gt∥2 ≤ G. The

performance metric is the unconstrained dynamic regret defined in (4.1).

4.3.2 Main result

In a nutshell, our strategy is to apply an unconstrained static OLO algorithm on the

transform domain, and in a coordinate-wise fashion. This is remarkably simple, but

also contains a few twists. To make it concrete, let us start with a single feature

vector.

Size 1 dictionary Consider an index n ∈ [1 : N ], which is associated to the

feature h1:T,n := [h1,n, . . . , hT,n] ∈ RdT . We suppress the index n and write it as

h1:T = [h1, . . . , hT ]. For any comparator u1:T ∈ span(h1:T ), there exists û ∈ R such

that u1:T = h1:T û. The cumulative loss of u1:T can be rewritten as

⟨g1:T , u1:T ⟩ = ⟨g1:T , h1:T ⟩ û =
T∑
t=1

⟨gt, ht⟩ û,

which is the loss of the coefficient û in a 1D OLO problem with surrogate loss

gradients ⟨gt, ht⟩. Essentially, to compete with a one dimensional comparator subspace

span(h1:T ), it suffices to run a 1D static regret algorithm that competes with û ∈ R.

Such a procedure is presented as Algorithm 4.1.

It remains to choose the static algorithm A. Our results from Chapter 2 can

be applied, but to demonstrate its versatility a bit more, we adopt the FreeGrad

algorithm (Mhammedi and Koolen, 2020) as an example, which simultaneously achieves

static comparator adaptivity and second order gradient adaptivity (Duchi et al., 2011),

i.e., Type 2 in Section 1.4. Its pseudocode and static regret bound are presented as

follows. The algorithm enjoys another favorable property called scale-freeness: the

8The assumptions on the features are mild: an important special case is maxt ∥ht,n∥2 = 1, as in
the Haar wavelet dictionary. We impose these assumptions to apply unconstrained static algorithms
verbatim.
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Algorithm 4.1 Sparse coding with size 1 dictionary.

Require: An algorithm A for static 1D unconstrained OLO with G-Lipschitz losses;
and a nonzero feature vector h1:T ⊂ RdT .

1: for t = 1, 2, . . . , do
2: Receive ht ∈ Rd.
3: If ht is nonzero, query A for its output, and assign it to x̂t ∈ R; otherwise, x̂t is

arbitrary.
4: Predict xt = x̂tht ∈ Rd, and receive the loss gradient gt ∈ Rd.
5: If ht is nonzero, compute ĝt = ⟨gt, ht⟩ and send it to A as its surrogate loss

gradient.
6: end for

predictions are invariant to any positive scaling of the loss gradients and the Lipschitz

constant G.

Algorithm 4.2 FreeGrad (Mhammedi and Koolen, 2020, Definition 4): scale-free
and gradient adaptive unconstrained static OLO.

Require: A hyperparameter ε > 0; dimension d; Lipschitz constant Ĝ.
1: Initialize a gradient sum counter s = 0 ∈ Rd and a variance counter v = Ĝ2.
2: for t = 1, 2, . . . do
3: Predict

x̂t = −εs ·
(2v + Ĝ ∥s∥2)Ĝ2

2(v + Ĝ ∥s∥2)2
√
v
· exp

(
∥s∥22

2v + 2Ĝ ∥s∥2

)
.

4: Observe the loss gradient ĝt.
5: Update s← s+ ĝt, and v ← v + ĝ2t .
6: end for

Lemma 4.1 (Theorem 20 of (Mhammedi and Koolen, 2020)). With any hyperparam-

eter ε > 0, for all T ∈ N+ and û ∈ R, Algorithm 4.2 guarantees

T∑
t=1

⟨ĝt, x̂t − û⟩ ≤

εĜ+

[
2 ∥û∥2

√
VT log+

(
2 ∥û∥2 VT
εĜ2

)]
∨
[
4 ∥û∥2 Ĝ log

(
4 ∥û∥2

√
VT

εĜ

)]
,
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where

VT = Ĝ2 +
T∑
t=1

∥ĝt∥22 .

In combination, Algorithm 4.1 has the following guarantee.

Lemma 4.2. Let ε > 0 be an arbitrary hyperparameter for Algorithm 4.2. Applying

its 1D version as the static subroutine, for all T ∈ N+ and u1:T ∈ span(h1:T ), against

any adversary E, Algorithm 4.1 guarantees

T∑
t=1

lt(xt)−
T∑
t=1

lt(ut) ≤

εG+

G∥u1:T∥2
∥h1:T∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog (max

t
∥ut∥2 , T, ε

−1
)
.

General dictionary With the one dimensional learner above, let us turn to the

general setting withN features. We runN copies of Algorithm 4.1 in parallel, aggregate

their predictions, and the regret bound sums Lemma 4.2, similar to (Cutkosky, 2019b)

in the static setting. The pseudocode is presented as Algorithm 4.3, and the regret

bound is Theorem 4.1.

Algorithm 4.3 Sparse coding with general dictionary.

Require: A dictionary H = [ht,n], where ht,n ∈ Rd; and a hyperparameter ε > 0.
1: For all n ∈ [1 : N ], initialize a copy of Algorithm 4.1 as An. It runs the 1D version

of Algorithm 4.2 as a subroutine, with hyperparameter ε/N .
2: for t = 1, 2, . . . , do
3: Receive Ht = [ht,n]1≤n≤N . For all n, send ht,n to An, and query its prediction

wt,n.

4: Predict xt =
∑N

n=1wt,n.
5: Receive loss gradient gt, and send it to A1, . . . ,AN as loss gradients.
6: end for

Theorem 4.1. Consider any collection of signals z(n) ∈ span(h1:T,n), ∀n. We define its

reconstruction error (for the comparator u1:T ) as z
(0) = u1:T −

∑N
n=1 z

(n) ∈ RdT . Then,
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for all T ∈ N+ and u1:T ∈ RdT , against any adversary E, Algorithm 4.3 guarantees

T∑
t=1

lt(xt)−
T∑
t=1

lt(ut) ≤ −
T∑
t=1

〈
gt, z

(0)
t

〉
+ εG

+

G N∑
n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
,

where z
(n)
t ∈ Rd is the t-th round component of the sequence z(n) ∈ RdT .

To interpret this very general result, let us consider a few concrete settings.

• Static regret. If the size N = d and the dictionary Ht = Id, then for any static

comparator (ut = u ∈ Rd), we can let z(n) be the projection of the sequence u1:T

onto span(h1:T,n). This leaves zero reconstruction error, i.e., u1:T =
∑N

n=1 z
(n).

Theorem 4.1 reduces to

RegretT (u1:T ) ≤ εG+ ∥u∥1G
√
T · polylog

(
∥u∥∞ , T, d, ε−1

)
, (4.6)

which recovers a standard Õ(∥u∥1
√
T ) bound in coordinate-wise unconstrained

static OLO (Orabona, 2019, Section 9.3).

• Orthogonal dictionary. Entering the dynamic realm, we now consider the

situation where feature vectors are orthogonal (standard in signal processing),

and the comparator u1:T ∈ span(H). Same as the static setting, we are free to

define z(n) as the projection

z(n) = ⟨h1:T,n, u1:T ⟩
h1:T,n

∥h1:T,n∥22
.

Due to orthogonality, the projection preserves the energy of the time domain

signal, i.e, E = ∥u1:T∥22 =
∑N

n=1

∥∥z(n)∥∥2
2
. By further defining SparsityH :=

(
∑N

n=1

∥∥z(n)∥∥
2
)2/
∑N

n=1

∥∥z(n)∥∥2
2
(arbitrary when the denominator is zero), Theo-
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rem 4.1 reduces to

RegretT (u1:T ) ≤ Õ
(√

E · SparsityH
)
. (4.7)

Note that as the squared L1/L2 ratio, SparsityH is a classical sparsity measure

(Hurley and Rickard, 2009) of the decomposed signals {z(n)}1≤n≤N : if there are

only N0 ≤ N nonzero vectors within this collection, then SparsityH ≤ N0 due to

the Cauchy-Schwarz inequality. Therefore, the generic sparsity adaptive bound

(4.7) depends on (i) the energy of the comparator u1:T ; and (ii) the sparsity of

its representation, without knowing either condition beforehand. The easier the

comparator is (low energy, and sparse on H), the lower the bound becomes.

• Overparameterization. So far we have only considered N ≤ dT , where feature

vectors can be orthogonal. However, a key idea in signal processing is to use

redundant features (N ≫ dT ) to obtain sparser representations. Theorem 4.1

implies a feature selection property in this context: since it applies to any

decomposition of u1:T , as long as u1:T can be represented by a subset H̃ of

orthogonal features within H, the regret bound adapts to SparsityH̃, the sparsity

of u1:T measured on H̃. That is, we are theoretically justified to assemble smaller

dictionary into a larger one – the regret bound adapts to the quality of the

optimal (comparator-dependent) sub-dictionary H̃.

How to choose the dictionary H? In practice, we may use prior knowledge on the

dynamics of the environment. For example, if the environment is periodic, such as the

weather or the traffic, then a good choice could be the Fourier dictionary. Similarly,

wavelet dictionaries are useful for piecewise regular environments. Another possibility

is to learn the dictionary from offline datasets, which is also called representation

learning. Overall, such prior knowledge is not required to be correct – our algorithm

can take any dictionary as input, and the regret bound naturally adapts to its quality.
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The established connection between adaptivity and signal structures is a key benefit

of our framework.

Environment

Transform domain ℝ𝑁

𝑆𝑡 = 𝑆𝑡−1 − ො𝑔𝑡

ො𝑔𝑡 = ℋ𝑡
𝑇𝑔𝑡

Potential on ℝ𝑁

ො𝑥𝑡+1 = 𝜕Φ𝑡(𝑆𝑡)

𝑥𝑡+1 = ℋ𝑡+1 ො𝑥𝑡+1

Figure 4·1: Update from the dual space.

A view from the dual space Besides the primal space analysis so far, our algorithm

has an equivalent interpretation on the dual space, which leads to a possibly interesting

intuition. Typically, in the t-th round, the dual space maintains a summary St−1 of

the past observations g1:t−1 (called a sufficient statistic), and then passes it through a

potential function Φt to generate predictions (Cesa-Bianchi and Lugosi, 2006; Foster

et al., 2018; Orabona, 2019). While most existing algorithms store the sum of past

gradients
∑t−1

i=1 gi to handle the static regret, our algorithm stores an N -dimensional

transform of the entire sequence g1:t−1, illustrated in Figure 4·1. In this way, the

dynamics of the environment are “memorized”.

Power law For a more specific discussion, let us consider an empirically justified

setup. In signal processing, the study of sparsity has been partially motivated by the

power law (Price, 2021): under the standard Fourier or wavelet transforms, the n-th

largest transform domain coefficient of many real signals can have magnitude roughly

proportional to n−α, where α ∈ (0.5, 1). We also observe this phenomenon from a

weather dataset, with details presented in Section 4.5. Figure 4·2 plots the sorted

Fourier coefficients of an actual temperature sequence, on a log-log scale. A fitted

dashed line is shown in orange, with (negative) slope α = 0.68.
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Figure 4·2: An illustration of the power law.

When the power law holds, our bound (4.7) has a more interpretable form. As-

suming d = 1 and N = T ,

SparsityH =
(
∑T

n=1 n
−α)2∑T

n=1 n
−2α

= O
(
T 2−2α

)
.

In a typical setting of E = Θ(T ), we obtain a sublinear Õ(T 1.5−α) dynamic regret

bound.

4.4 The Haar OLR algorithm

This section presents our quantitative contributions: despite its generality, our sparse

coding framework can improve existing unconstrained dynamic regret bounds (Jacobsen

and Cutkosky, 2022). The key workhorse is the ability of wavelet bases to sparsely

represent smooth signals. Section 4.4.1 introduces the necessary background, while

concrete bounds and proof sketches are presented in Section 4.4.2.
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4.4.1 Haar wavelet

Wavelet is a fundamental topic in signal processing, with long lasting impact through-

out modern data science. Roughly speaking, the motivation is that a signal can

simultaneously exhibit nonstationarity at different time scales, such as slow drifts and

fast jumps, therefore to faithfully represent it, we should apply feature vectors with

different resolutions. We will only use the simplest Haar wavelets, which is already

sufficient. Readers are referred to (Mallat, 2008; Johnstone, 2019) for a thorough

introduction to this topic.

Specifically, we start from the 1D setting (d = 1) with a dyadic horizon (T = 2m, for

some m ∈ N+). The Haar wavelet dictionary consists of T (unnormalized) orthogonal

feature vectors, indexed by a scale parameter j ∈ [1 : log2 T ] and a location parameter

l ∈ [1 : 2−jT ]. Given a (j, l) pair, define a feature h(j,l) = [h
(j,l)
1 , . . . , h

(j,l)
T ] ∈ RT

entry-wise as

h
(j,l)
t =


1, t ∈ [2j(l − 1) + 1 : 2j(l − 1) + 2j−1];

−1, t ∈ [2j(l − 1) + 2j−1 + 1 : 2jl];

0, else.

It means that h(j,l) is only nonzero on a length-2j interval, while changing its sign

once in the middle of this interval. Collecting all the (j, l) pairs yield T − 1 features;

then, we incorporate an extra all-one feature h∗ = [1, . . . , 1] to complete this size T

dictionary.

The defined features can be assembled into the columns of a matrix Haarm. To

help with the intuition, Haar2 with T = 4 is presented in (4.8). The columns from the

left to the right are h∗, h(2,1), h(1,1) and h(1,2). Observe that they are orthogonal, and

the norm assumption from Section 4.3.1 is satisfied. Therefore, our sparsity adaptive
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regret bound (4.7) is applicable.

Haar2 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 . (4.8)

Given this 1D Haar wavelet dictionary, we apply a minor variant of Algorithm 4.3

to prevent the dimension d from appearing in the regret bound. When d = 1, the

algorithm is exactly Algorithm 4.3, where intuitions are most clearly demonstrated.

Then, the doubling trick is adopted to relax the knowledge of T . The pseudocode for

the single block setting and the doubling trick is presented as Algorithm 4.4 and 4.5.

Algorithm 4.4 Haar OLR with known time horizon.

Require: A time horizon T = 2m; the T × T Haar dictionary matrix Haarm; and a
hyperparameter ε > 0 (default is 1).

1: Let N = T . For all n ∈ [1 : N ], initialize a copy of the d dimensional version of
Algorithm 4.2 as An, with hyperparameter ε/N .

2: for t = 1, 2, . . . , do
3: Receive the t-th row of Haarm, and index it as [ht,1, . . . , ht,N ]; note that ht,n ∈ R.
4: for n = 1, 2, . . . , N do
5: If ht,n ̸= 0, query An for its output, and assign it to x̂t,n ∈ Rd; otherwise, x̂t,n

is arbitrary.
6: Define wt,n = ht,nx̂t,n ∈ Rd.
7: end for
8: Predict xt =

∑N
n=1wt,n ∈ Rd, receive loss gradient gt ∈ Rd.

9: for n = 1, 2, . . . , N do
10: If ht,n ̸= 0, compute ĝt,n = ht,ngt and send it to An as its surrogate loss

gradient.
11: end for
12: end for

Algorithm 4.5 Anytime Haar OLR (Algorithm 4.4 with doubling trick).

1: for m = 1, 2, . . . , do
2: Run Algorithm 4.4 for 2m rounds, which uses the matrix Haarm. The hyperpa-

rameter is set to 1.
3: end for
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Remark 4.1. It is equivalent to view Algorithm 4.4 as operating on a dT×dT “master”

dictionary matrix H, defined block-wise as the following: for all (i, j) ∈ [1 : T ]2, the

(i, j)-th block of H is the product of the (i, j)-th entry of Haarm (which is a scalar)

and the d-dimensional identity matrix Id. That is, H is a block matrix; each block

is a diagonal matrix with equal diagonal entries determined by Haarm. Roughly, the

algorithm measures distances in Rd by the L2 norm, while measuring RT by the L1

norm.

Computation An appealing property is that most Haar wavelet features are sup-

ported on short local intervals. Despite N = T , there are only log2 T active features in

each round. Therefore, the runtime of our algorithm is O(d log T ) per round, matching

that of all the baselines we compare to. This local property holds for compactly

supported wavelets, most notably the Daubechies family (Daubechies, 1988; Cohen

et al., 1993). The latter can represent more general, piecewise polynomial signals.

4.4.2 Main result

For almost static environments, our Haar OLR algorithm guarantees the follow-

ing bounds, by relating comparator smoothness to the sparsity of its Haar wavelet

representation. Different from (Jacobsen and Cutkosky, 2022) which only contains

P -dependent bounds, we also provide a K-switching regret bound, in order to avoid

using P = O(KM).9 Interestingly, the proofs of the following two bounds are quite

different: the first uses exact sparsity, while the second uses approximate sparsity.

Theorem 4.2 (Switching regret). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 4.5

guarantees

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
. (4.9)

Theorem 4.3 (Path length bound). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 4.5

guarantees

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
. (4.10)

9Recall that one of our motivations is to remove M from the existing bounds.
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It can be verified that for all comparators u1:T , our bounds are at least as good

as prior works. The optimality is a more subtle issue, as one should compare upper

bound functions (of u1:T ) to lower bound functions in a global manner, rather than

comparing the exponents of T in minimax online learning. Nonetheless, we present

two examples of u1:T , where the improvement can be more clearly seen through better

exponents.

Example 4.1 (Tracking outliers). Consider the situation where u1:T has a locally

outlying scale: we set all the instantaneous comparators ut to 1, except k ≤
√
T

consecutive members which are set to
√
T . Crucially, |ū| = O(1) and S̄ = O(k

√
T ),

while M =
√
T and S = Θ(T ). Both our bounds, i.e., (4.9) and (4.10), are Õ(

√
kT ),

while the fine baseline (4.4) is Õ(T 3/4), and the coarse baseline (4.3) is Õ(T ). The

largest gain is observed when k is a constant, i.e., the comparator is subject to a short

but large perturbation.

Example 4.2 (Persistent oscillation). Consider the situation where ū = 1, and all

the instantaneous comparators oscillate around ū: ut = ū + αt/
√
T . αt = 1 or −1,

and it only switches sign for k times. Notice that S̄ =
√
T , while S = Θ(T ). All the

baselines are Õ
(√

T + k1/2T 1/4
)
, while both our bounds are Õ(

√
T ). The largest gain

is observed when k = T − 1, i.e., the comparator switches in every round.

In summary, we show that existing bounds are suboptimal, while the optimality of

our results remains to be studied. It highlights the importance of comparator energy

and variability in the pursuit of better algorithms, which have not received enough

attention in the literature. Next, we briefly sketch the proofs of these bounds.

Proof sketch The switching regret bound mostly follows from a very simple observa-

tion: if a sequence is constant throughout the support of a Haar wavelet feature, then

its transform domain coefficient for this feature is zero. As features on the same scale

j do not overlap, a K-switching comparator can only induce K nonzero coefficients

on the j-th scale. There are at most K log2 T nonzero coefficients in total, therefore
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SparsityH = Õ(K). The bound (4.9) is obtained by applying this argument after

taking out the average of u1:T .

As for the path length bound, the idea is to consider the reconstructed sequences,

using transform domain coefficients on a single scale j. These are usually called detail

sequences in the wavelet literature (Mallat, 2008). Each detail sequence has a relatively

simple structure, whose path length and variability can be associated to the magnitude

of its transform domain coefficients. Moreover, as these detail sequences are certain

“locally averaged” and “globally centered” versions of the actual comparator u1:T , their

regularities are dominated by the regularity of u1:T itself. In combination, this yields a

relation between PS̄ and the coefficients’ L1 norm, i.e.,
∑N

n=1

∥∥z(n)∥∥
2
in Theorem 4.1,

from which the bound is established.

Compared to the analysis of (Jacobsen and Cutkosky, 2022), the key advantage of

our analysis is the decoupling of function approximation from the generic sparsity-

based regret bound. The former is algorithm-independent, while the latter can be

conveniently combined with advances in static online learning. With the help of

approximation theory (e.g., Fourier features, wavelets, and possibly deep learning

further down the line), intuitions are arguably clearer in this way, and solutions could

be more precise (compared to analyses that “mix” function approximation with regret

minimization).

MRA in online learning On a broader scope, wavelets embody the idea of Multi-

Resolution Analysis (MRA), which is reminiscent of the classical geometric covering

(GC) construction in adaptive online learning (Daniely et al., 2015). Such a construc-

tion starts from a class of GC time intervals, which are equivalent to the support

of Haar wavelet features. On each GC interval, a static online learning algorithm is

defined (corresponding to using an all-one feature, cf., Section 4.3.2); and then, the

outputs of these “local” algorithms are aggregated by a sleeping expert algorithm on
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top (Luo and Schapire, 2015; Jun et al., 2017). Algorithmically, our innovation is

introducing sign changes in the features, accompanied by a different, additive way to

aggregate base algorithms. For tackling nonstationarity, both approaches have their

own strengths: the GC construction can produce strongly adaptive guarantees (Type

4 in Section 1.4) on subintervals of the time horizon, while our algorithm does not

need a bounded domain. Their possible connections are intriguing.

Lipschitz vs strongly convex losses Finally, we comment on the choice of loss

functions in unconstrained dynamic OCO. Besides the Lipschitz assumption we impose,

a fruitful line of works by Baby and Wang (Baby and Wang, 2019, 2020, 2021; Baby

et al., 2021; Baby and Wang, 2022) considered an alternative setting with strong

convexity, motivated by the prevalence of the square loss in statistics. Their focus

is primarily on bounded domains, as (Baby and Wang, 2019) showed that evaluated

under the square loss, a lower bound for the unconstrained dynamic regret is Ω(P 2). A

sublinear regret bound here requires P = o(
√
T ), rather than P = o(T ) with Lipschitz

losses – that is, the environment is required to be “more static” than the typical

requirement in the Lipschitz setting.

Essentially, such a behavior is due to the large penalty that the square loss imposes

on outliers. An adversary in online learning can deliberately pick the loss functions such

that some of the learning agent’s predictions are large outliers with “huge” (square)

losses, while the offline optimal comparator sequence suffers zero losses. Using the

Lipschitz losses instead may offer an advantage on unbounded domains, due to being

more tolerant to these outliers. Furthermore, Lipschitz losses do not necessarily have

minimizers – this is useful for decision problems (as opposed to estimation), where a

ground truth may not exist.10

10An example is financial investment without budget constraints: doubling the invested amount
also doubles the return.
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4.5 Application and experiment

This section presents an application of our framework to time series forecasting.

Roughly speaking, we aim to address the following question:

Given a black box forecaster, can we make it provably robust against (structured)

nonstationarity?

Along the way, our objective is to show that

• Simultaneously handling unconstrained domains and dynamic comparators in

online learning brings downstream benefits in time series forecasting.

• Our sparse coding framework can enhance empirically developed forecasting

strategies.

Setting Let us consider the following forecasting problem, which resembles the OCO

game. The difference is that, here, we further assume access to a black box forecaster

A. In each (the t-th) round,

1. The black box forecaster A produces a prediction at ∈ Rd based on the observed

history (z1:t−1 and l1:t−1).

2. After observing at, we make a prediction xt ∈ Rd.

3. The environment reveals a true value zt ∈ Rd and a convex loss function

lt : Rd → R. lt is G-Lipschitz with respect to ∥·∥2, and zt is one of its minimizers

satisfying lt(zt) = 0.

Our goal is to achieve low total loss
∑T

t=1 lt(xt). Since trivially picking xt = at already

achieves a total loss of
∑T

t=1 lt(at), our goal is to improve it in certain situations, by

designing a more sophisticated prediction rule based on at.
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Intuition In the above setting, A can be any algorithm that predicts z1:T in a

reasonable, but non-robust manner. Taking the weather forecasting for example, there

are a few notable cases.

• A is a simulator of the governing meteorological equations, which uses the online

observations z1:t−1 as boundary conditions.

• A is an autoregressive model, which predicts a linear combination of the past

observations. The coefficients are determined by statistical modeling.

• A is a large deep learning model trained on offline datasets (e.g., the weather

history at geographically similar locations).

Even though such forecasters typically lack performance guarantees, their predictions

can be used to construct time-varying Bayesian priors (see our discussion in the

Introduction): given at, we will apply a fine-tuning adjustment δt to predict xt = at+δt.

Intuitively, the total loss is low if at is close to the true value zt, i.e., when the prior is

good.

Reduction to unconstrained dynamic regret Concretely, if xt = at + δt, then

due to convexity, for all subgradients gt ∈ ∂lt(xt) we have lt(xt)− lt(zt) ≤ ⟨gt, δt⟩ −

⟨gt, zt − at⟩. The RHS is the instantaneous regret of δt in an OLO problem with

loss gradient gt and comparator zt − at. Applying our unconstrained dynamic OLO

algorithm, the total loss in forecasting can be bounded as

T∑
t=1

lt(xt) ≤ RegretT (z1:T − a1:T ).

That is, the total loss bound adapts to the complexity of the error sequence z1:T −a1:T

(of the given black box forecaster). This contains a1:T = 0 as a special case, where no

side information is assumed.



154

Let us compare this bound to the baseline
∑T

t=1 lt(at), which corresponds to

trivially picking xt = at.

• If z1:T = a1:T , i.e., the black box A is perfect, then the baseline loss is∑T
t=1 lt(at) = 0. In this case, due to Theorem 4.1, our general sparse coding

framework guarantees
∑T

t=1 lt(xt) ≤ εG, where ε > 0 is an arbitrary hyper-

parameter. That is, our algorithm is worse than the baseline by at most a

constant.

• If z1:T ̸= a1:T , then in general, the baseline loss
∑T

t=1 lt(at) is linear in T . In

contrast, our algorithm could guarantee a sublinear RegretT (z1:T − a1:T ), thus

also a sublinear total loss, when the error sequence z1:T − a1:T is structurally

simple (e.g., sparse under a transform, or low path length) with respect to our

prior knowledge.

In summary, the idea is that by sacrificing at most a constant loss when A is perfect

(z1:T = a1:T ), we could robustify A against certain structured unseen environments,

improving the linear total loss to a sublinear rate.

Importance of unconstrained domain The above application critically relies on

the ability of our algorithm to handle unconstrained domains. To demonstrate this,

suppose we instead use the bounded domain algorithm from (Zhang et al., 2018a)

to pick the fine-tuning adjustment δt. Then, the above analysis only holds if an

upper bound D of the maximum error maxt ∥zt − at∥2 is known a priori – this is a

stringent requirement in practice. Furthermore, when z1:T = a1:T , such an alternative

approach only guarantees
∑T

t=1 lt(xt) ≤ Õ(D
√
T ), which is considerably worse than

the baseline 0. In other words, the alternative fine-tuning strategy could ruin the

black box forecaster A, when the latter performs well.
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For the rest of this section, we present experiments for this time series application.

Section 4.5.1 demonstrates the power law phenomenon, which shows that both the time

series z1:T and the error sequence z1:T − a1:T could exhibit exploitable structures. This

implies good performance guarantees using our theoretical framework. Section 4.5.2

goes one step further by actually testing the fine-tuning performance of our algorithm.

4.5.1 Power law phenomenon

This subsection further verifies the power law phenomenon discussed in Section 4.3.2,

with both wavelet and Fourier dictionaries. The goal is to present concrete exam-

ples where signal structures can be exploited by our framework, generating more

interpretable, sublinear regret bounds.

Wavelet dictionary We first verify the power law on the Haar wavelet dictionary.

Intuitively it is suitable when the dynamics of the environment exhibits switching

behavior. To this end, consider the following stochastic time series model

zt = zt−1βt + ζt, (4.11)

where {βt} and {ζt} are iid random variables satisfying ζt ∼ Uniform(−q, q) and

βt =


−1, w.p. p,

1, w.p. 1− p.

Picking T = 215 = 32768, p = 0.0005 and q = 0.005, we generate four sample

paths of z1:T using four arbitrary random seeds (2020, 2021, 2022 and 2023), and

the obtained time domain signals are plotted in the first row of Figure 4·3. As the

switching probability p is chosen to be low enough, all the sample paths exhibit a

small amount of sharp switches, corrupted by the noise term ζt. According to our
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intuition from signal processing, the Haar wavelet transform of these signals is sparse.

Now let us verify this intuition. We take the Haar wavelet transform of these

signals, sort the transform domain coefficients and plot the results on log-log scales

– these are shown as the solid blue lines in the second row of Figure 4·3. Using the

largest 100 transform domain coefficients on each plot, we fit a liner model using least

square, which is shown as the dashed orange line. The slope of each line is −α, where

α is displayed in the legend. It can be seen that for all four sample paths, the fitted α

is within (0.5, 1), thus justifying the power law phenomenon (Price, 2021). Given α,

the regret of our Haar wavelet algorithm is Õ(T 1.5−α), as shown in Section 4.3.2.

As for the implication in time series forecasting, let us consider forecasting z1:T

with a1:T = 0, i.e., without the external forecaster A. Given the power law, the total

forecasting loss of our fine-tuning approach is
∑T

t=1 lt(xt) ≤ Õ(T 1.5−α).

We also remark that although only four sample paths are demonstrated, we observe

the power law phenomenon on all random seeds we tried in the experiment.
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(c) Seed= 2022.
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Figure 4·3: Verifying the power law on the Haar Wavelet dictionary.
First row: time domain signals. Second row: sorted transform domain
coefficients on a log-log plot. The dashed orange line is the best linear fit
on the log-log plot, using the largest 100 transform domain coefficients.
From left to right: four arbitrary random seeds.
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Fourier dictionary Next, we verify the power law on the Fourier dictionary. Here

we use the Jena weather forecasting dataset,11 which records the weather data at a

German city, Jena, every 10 minutes. We take the data from Jan 1st, 2010 till July

1st, 2022, consisting of T = 656956 time steps. Two different modalities, namely the

temperature and the humidity, are considered. The actual temperature and humidity

sequences are plotted in Figure 4·4.
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Figure 4·4: Time domain behavior of the weather data.

For the sequence of temperature z1:T , we perform its Discrete Fourier Transform

(DFT), which returns T complex number as the frequency domain coefficients. We

discard the second half of the coefficients due to symmetry, since the input of the

transform is real. For the remaining coefficients, we take their absolute values, sort

them and plot the result on a log-log plot. Similar to the wavelet experiment, we

also fit a linear model using the largest 100 transform domain coefficients. These are

shown as Figure 4·5 (Left), which exhibit the power law phenomenon.

Furthermore, we perform the same procedure on the temperature difference se-

quence {zt+1−zt}, where the t-th entry is the change of temperature from the t-th time

step to the t+1-th time step. The result is shown as Figure 4·5 (Right). Although the

tail is heavier, we can still observe similar power-law phenomenon for large transform

11Available at https://www.bgc-jena.mpg.de/wetter/.

https://www.bgc-jena.mpg.de/wetter/
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Figure 4·5: Verifying the power law on the Fourier dictionary. Left: the
DFT of the temperature sequence. Right: the DFT of the temperature
difference sequence.

domain coefficients.

Now, let us discuss again the implication of the observed power law in time

series forecasting. First, consider forecasting z1:T without A. Given the power

law of z1:T itself, the Fourier version of our forecaster guarantees sublinear total

loss. Next, consider forecasting z1:T with A being the zeroth-order hold forecaster,

i.e, at = zt−1. The power law of the difference sequence {zt+1 − zt} implies good

forecasting performance of our framework in this context.

Parallel results on the humidity sequence are reported in Figure 4·6, with a similar

qualitative behavior. It illustrates the prevalence of the power law across different

types of the data.

4.5.2 Fine-tuning forecaster

Finally, we test the performance of our forecasting framework on the synthetic switching

data and the actual temperature sequence. For the first case, our framework is

equipped with the Haar wavelet dictionary. The Fourier dictionary is adopted in

the second case. In both cases, we compare our algorithm against the baseline from

(Jacobsen and Cutkosky, 2022). More specifically, we take our online learning algorithm
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Figure 4·6: Verifying the power law on the Fourier dictionary. Left:
the DFT of the humidity sequence. Right: the DFT of the humidity
difference sequence.

(Algorithm 4.3) and the algorithm from (Jacobsen and Cutkosky, 2022), plug them

both into the time series forecasting workflow introduced at the beginning of this

section, and then compare their total forecasting loss.

Concretely, let us start from the wavelet dictionary.

Wavelet dictionary In this case, consider the setting without the external forecaster

A. We run both online learning algorithms (our Algorithm 4.3 and the baseline

(Jacobsen and Cutkosky, 2022, Algorithm 2)), and use their outputs directly as

the time series predictions. Our Algorithm 4.3 is equipped with the Haar wavelet

dictionary defined in Section 4.4.1. The configurations of the time series model are

the same as the previous subsection, with T = 215 = 32768, p = 0.0005 and q = 0.005.

The loss functions lt are the absolute loss.

Both algorithms require a confidence hyperparameter ε, and we set it to 1. Since

the time series data (4.11) is random, we run both algorithms on 10 random seeds,

and calculate their total loss. Our algorithm achieves a total loss of 44048, which is

considerably lower than the baseline’s total loss 62465. This is consistent with the

theoretical results developed so far.
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Fourier dictionary Next, we turn to the task of temperature forecasting. The data

is reported in the previous subsection. We take its first T = 50000 entries, and assign

it to the true time series z1:T ; the loss functions lt are the absolute loss. The black

box forecaster A is assigned to the zeroth-order hold forecaster, i.e., at = zt−1.

For our framework, we need to specify the dictionary. Although using the entire

DFT matrix could lead to low regret guarantees (as demonstrated by the power law),

this is computationally challenging. Instead, we exploit the fact that the weather

is naturally periodic, with the period of one day. Picking the base frequency ω

accordingly, we define features indexed by k (the harmonic order) as

ht,2k−1 = cos(kωt),

ht,2k = sin(kωt).

By specifying the maximum order K, we obtain 2K features {ht,2k−1, ht,2k}k∈[1:K] from

this construction. An all-one feature is further added, making the dictionary size

N = 2K + 1.

Again, we set the confidence hyperparameter ε = 1 for our algorithm. The total

loss as a function of the dictionary size N is plotted in Figure 4·7. Notably, the

case of N = 0 is equivalent to trivially following the advice of the given forecaster

A: xt = at = zt−1. It can be seen that our fine-tuning framework (N > 0) actually

results in better performance, due to exploiting the structures in the error sequence

z1:T − a1:T .

We also test the fine-tuning performance of the algorithm from (Jacobsen and

Cutkosky, 2022). Same as the above, we set ε = 1. The total loss achieved by this

alternative algorithm is 8238, which is around the same as A itself, and significantly

higher than the total loss of our algorithm with moderate amount of features (N > 5).

This fits the intuition so far: the environment contains persistent dynamics, which the
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Figure 4·7: Testing our algorithm for temperature forecasting.

algorithm from (Jacobsen and Cutkosky, 2022) cannot handle.

4.6 Summary

This chapter presents a unified study of unconstrained and dynamic online learning,

where the two problem structures are naturally connected via comparator adaptivity.

Building on the synergy between static parameter-free algorithms and temporal

representations, we develop an algorithmic framework achieving a generic sparsity-

adaptive regret bound. Equipped with the wavelet dictionary, our framework improves

the quantitative results from (Jacobsen and Cutkosky, 2022), by adapting to finer

characterizations of the comparator sequence.

For future works, several interesting questions could stem from this paper. For

example,

• Our regret bound is stated against individual comparator sequences. One could

investigate the implication of this result in stochastic environments, where the

comparator statistics may take more concrete forms.
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• Besides the sparsity and the energy studied in this paper, an interesting open

problem is investigating alternative complexity measures of the comparator,

possibly drawing connections to statistical learning theory.

• Our framework builds on pre-defined dictionary inputs. The quantitative benefit

of using a data-dependent dictionary is unclear.

• Beyond wavelets, one may investigate the combination of the sparse coding

framework with other function approximators, such as neural networks.

4.7 Proofs

4.7.1 General framework

Lemma 4.2

Proof of Lemma 4.2. Subsuming poly-logarithmic factors, the static regret bound of

our static subroutine (Algorithm 4.2) can be written as

T∑
t=1

ĝt (x̂t − û) ≤ εĜ+ |û|

Ĝ+

√√√√ T∑
t=1

ĝ2t

 · polylog (|û| , T, ε−1
)
,

where û is any 1D static comparator that the subroutine handles.

Now, for any single-directional comparator u1:T ∈ span(h1:T ) considered in this

lemma, there exists û ∈ R such that u1:T = ûh1:T . The dynamic regret can be rewritten

as

T∑
t=1

lt(xt)−
T∑
t=1

lt(ut) ≤
T∑
t=1

⟨gt, xt − ut⟩ =
T∑
t=1

⟨gt, htx̂t − htû⟩ =
T∑
t=1

ĝt(x̂t − û),

and the RHS can be bounded using the static regret bound above. Note that |ĝt| =
|⟨gt, ht⟩| ≤ G, therefore the surrogate Lipschitz constant Ĝ from the static regret

bound can be assigned to G.
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In summary,

T∑
t=1

lt(xt)−
T∑
t=1

lt(ut)

≤ εG+ |û|

G+

√√√√ T∑
t=1

⟨gt, ht⟩2
 · polylog (|û| , T, ε−1

)

= εG+

G∥u1:T∥2
∥h1:T∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog(∥u1:T∥2

∥h1:T∥2
, T, ε−1

)

≤ εG+

G∥u1:T∥2
∥h1:T∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog (max

t
∥ut∥2 , T, ε

−1
)
,

where the last line is due to our assumption that ∥h1:T∥2 ≥ 1.

Theorem 4.1

Proof of Theorem 4.1. The idea of this theorem is a dynamic analogue of (Cutkosky,

2019b) to aggregate the regret bound of single direction learners. For all decomposition

u1:T =
∑N

n=0 z
(n) such that z(n) ∈ span(h1:T,n) for all n ∈ [1 : T ], we have

T∑
t=1

lt(xt)−
T∑
t=1

lt(ut) ≤ ⟨g1:T , x1:T − u1:T ⟩ =
〈
−g1:T , z(0)

〉
+

N∑
n=1

〈
g1:T , w1:T,n − z(n)

〉
.

For the first term on the RHS,
〈
−g1:T , z(0)

〉
= −

∑T
t=1

〈
gt, z

(n)
t

〉
. As for the rest,
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we plug in Lemma 4.2, with hyperparameter ε/N .

N∑
n=1

〈
g1:T , w1:T,n − z(n)

〉
≤

N∑
n=1

{
εN−1G

+

G ∥∥z(n)∥∥
2

∥h1:T,n∥2
+

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog (max
t

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)}
≤ εG

+

G N∑
n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
.

4.7.2 Wavelet background

Although the analysis of our framework is simpler than (Jacobsen and Cutkosky, 2022),

a challenge is carefully indexing all the quantities to account for the vectorized setting.

It is thus important to introduce a few notations to streamline the presentation. Haarm

is the T × T Haar dictionary matrix defined in Section 4.4.1, with T = 2m. Recall the

statistics of the comparator sequence, summarized in Table 4.1.

Local interval Given any scale-location pair (j, l), let the support I(j,l) be the time

interval where the feature h(j,l) is nonzero. That is,

I(j,l) := [2j(l − 1) + 1 : 2jl].

Moreover, let I
(j,l)
+ denote the first half of this interval, and I

(j,l)
− for the second half.

h(j,l) is 1 on I
(j,l)
+ , and −1 on I

(j,l)
− .

Normalization Let ˜Haarm be the orthonormal matrix obtained by scaling the

columns of Haarm. The normalized feature vectors are also denoted by tilde, i.e.,

instead of h∗ and h(j,l), the normalized features are h̃∗ and h̃(j,l).

Coordinate sequence Consider any comparator sequence u1:T ∈ RdT . For all

coordinate i ∈ [1 : d], we define its i-th coordinate sequence as u
(i)
1:T ∈ RT : the t-th
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entry of this coordinate sequence u
(i)
1:T , denoted by u

(i)
t , is the i-th coordinate of ut.

Transform domain coefficient We will also use the transform domain coefficients

of u1:T , under the Haar wavelet transform. In the single-feature, generic setting

(Section 4.3.2), we denoted a single transform domain coefficient by û ∈ R. With

wavelets, the transform domain encodes dT -dimensional vectors. According to our

convention so far, we will denote them by scale-location pairs (j, l): given a (j, l) pair,

the “coefficient” û(j,l) is a d-dimensional vector. There are T − 1 pairs of (j, l) in

total; complementing the representation, we use another û∗ ∈ Rd to represent the

“coefficient” for the all-one feature.

Given any scale parameter j ∈ [1 : log2 T ] and location parameter l ∈ [1 : 2−jT ],

let

û(j,l) :=
[〈
h̃(j,l), u

(1)
1:T

〉
, . . . ,

〈
h̃(j,l), u

(d)
1:T

〉]
,

and for the all-one feature,

û∗ :=
[〈
h̃∗, u

(1)
1:T

〉
, . . . ,

〈
h̃∗, u

(d)
1:T

〉]
.

That is, each entry is the inner product between the normalized feature and a coordinate

sequence from u1:T .

Due to the orthonormality of the applied transform (specified by the normalized

features h̃∗ and h̃(j,l)), the energy is preserved between the time domain and the

transform domain, i.e.,

E = ∥u1:T∥22 = ∥û
∗∥22 +

∑
j,l

∥∥û(j,l)∥∥2
2
,

and also the second order variability (the energy of the centered dynamic component

within u1:T ),

Ē =
T∑
t=1

∥ut − ū∥22 =
∑
j,l

∥∥û(j,l)∥∥2
2
. (4.12)

Moreover, since h̃∗ equals 1/
√
T times the all-one vector,

∥û∗∥22 =
d∑

i=1

〈
h̃∗, u

(i)
1:T

〉2
=

d∑
i=1

(
1√
T

∑
t

u
(i)
1:T

)2

= T

d∑
i=1

(
1

T

∑
t

u
(i)
1:T

)2

= ∥ū∥22 T.

(4.13)
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Detail reconstruction Given the transform domain coefficients, we can reconstruct

details of the comparator u1:T on the time domain. Similar to our notation in the

generic framework (Section 4.3.2), we keep the letter z, but replace the index n by

(j, l), which is more suitable for indexing wavelets.

Let z(j,l) ∈ RdT be the detail of u1:T along the (j, l)-th feature. It is the con-

catenation of T vectors in Rd, and for all t, the t-th of these vectors is defined

by

z
(j,l)
t := û(j,l)h̃

(j,l)
t ∈ Rd.

Similarly, we can define the detail z∗ along the feature h̃∗. Its t-th component is

z∗t := û∗h̃∗t ,

and clearly, the RHS does not depend on t since h̃∗ is scaled from the all-one feature

h∗.

Let us also sum the details across different locations. Given a scale j, let

z(j) :=
∑
l

z(j,l) ∈ RdT .

Note that the summands are sequences that do not overlap: at each entry, only one of

the summand sequence is nonzero. The full reconstruction is obtained by summing all

the details,

u1:T := z∗ +

log2 T∑
j=1

z(j).

Statistics of the detail sequence We can define statistics of the detail sequences

just like the statistics of the comparator u1:T . Specifically, define the first order

variability of the (j, l)-th detail as

S̄(j,l) :=
T∑
t=1

∥∥∥z(j,l)t

∥∥∥
2
.

Note that since the z
(j,l)
t sequence is centered (with average being equal to 0), its first

order variability equals its norm sum. Summing over the locations, the first order
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variability at the j-th scale is

S̄(j) :=
T∑
t=1

∥∥∥z(j)t

∥∥∥
2
,

which equals
∑

l S̄
(j,l).

Similarly, we can define the path length of the detail sequences. A caveat is that

we only count the path length within the support I(j,l) of the feature h(j,l),

P (j,l) :=
2j l−1∑

t=2j(l−1)+1

∥∥∥z(j,l)t+1 − z
(j,l)
t

∥∥∥
2
.

The comparator’s move when the support changes does not count. Summing over the

locations,

P (j) :=
∑
l

P (j,l).

4.7.3 Generic Haar OLR result

With the notation from the previous subsection, we now present a generic sparsity

adaptive regret bound for Algorithm 4.4 (fixed T Haar OLR). Since the latter is a

variant of our main sparse coding framework, the result can be analogously derived.

However, we need to be careful with the notations.

Lemma 4.3. For any m, T = 2m and u1:T ∈ RdT , with any hyperparameter ε > 0,

Algorithm 4.4 guarantees

RegretT (u1:T ) ≤ εG+G

∥z∗∥2 + log2 T∑
j=1

2−jT∑
l=1

∥∥z(j,l)∥∥
2

 · polylog (M,T, ε−1
)
.

The proof sums the regret bound of the d-dimensional version of the static sub-

routine (Lemma 4.1), across T different copies. It is very similar to Theorem 4.1,

therefore omitted.

It might be more convenient to use the transform domain coefficients û(j,l) in the

bound, rather than the reconstructed details z(j,l). In this case, we have

∥∥z(j,l)∥∥2
2
=
∑
t

∥∥∥z(j,l)t

∥∥∥2
2
=
∑
t

[∥∥û(j,l)∥∥2
2

∣∣∣h̃(j,l)t

∣∣∣2] = ∥∥û(j,l)∥∥2
2

∑
t

∣∣∣h̃(j,l)t

∣∣∣2 = ∥∥û(j,l)∥∥2
2
.
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Similarly,

∥z∗∥22 = ∥û
∗∥22 .

Therefore,

RegretT (u1:T ) ≤ εG+G

∥û∗∥2 + log2 T∑
j=1

2−jT∑
l=1

∥∥û(j,l)∥∥
2

 · polylog (M,T, ε−1
)
. (4.14)

Besides, our analysis will rely on two auxiliary lemmas. First, we show that local

averaging makes a signal more regular. Consider any signal u1:T ∈ RT , with the t-th

round component ut ∈ Rd. Local averaging refers to replacing any k consecutive

components of u1:T by their average, i.e., setting

uτ+1, . . . , uτ+k = k−1

k∑
i=1

uτ+i,

for some τ ∈ [0 : T − k].

Lemma 4.4. Let a signal w1:T ∈ RdT be the result of u1:T after local averaging, and

w̄ = T−1
∑T

t=1wt ∈ Rd. Then, the path length, the norm sum and the energy of w1:T ,

including their centered versions, are all dominated by those of u1:T . That is,

1.
∑T−1

t=1 ∥wt+1 − wt∥2 ≤
∑T−1

t=1 ∥ut+1 − ut∥2;

2.
∑T

t=1 ∥wt − w̄∥2 ≤
∑T

t=1 ∥ut − ū∥2;

3.
∑T

t=1 ∥wt − w̄∥22 ≤
∑T

t=1 ∥ut − ū∥
2
2.

4.
∑T

t=1 ∥wt∥2 ≤
∑T

t=1 ∥ut∥2, and
∑T

t=1 ∥wt∥22 ≤
∑T

t=1 ∥ut∥
2
2.

Proof of Lemma 4.4. Starting from the first part of the lemma, we prove for the

general case of 0 < τ < T − k. The boundary cases (τ = 0 and τ = T − k) are

analogous.

Local averaging only affects the path length caused by the averaged entries

uτ+1, . . . , uτ+k, and the two entries uτ and uτ+k+1 right besides averaging boundary;

this original path length quantity in u1:T is
∑k

i=0 ∥uτ+i+1 − uτ+i∥2. After averaging,
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the path length among these entries becomes∥∥∥∥∥uτ − k−1

k∑
i=1

uτ+i

∥∥∥∥∥
2

+

∥∥∥∥∥k−1

k∑
i=1

uτ+i − uτ+k+1

∥∥∥∥∥
2

= k−1

∥∥∥∥∥
k∑

i=1

(uτ − uτ+i)

∥∥∥∥∥
2

+ k−1

∥∥∥∥∥
k∑

i=1

(uτ+i − uτ+k+1)

∥∥∥∥∥
2

≤ k−1

k∑
i=1

(∥uτ − uτ+i∥2 + ∥uτ+i − uτ+k+1∥2)

≤
k∑

i=0

∥uτ+i+1 − uτ+i∥2 .

Now consider the second part of the lemma. After local averaging, w̄ = ū. The

affected part of the signal contributes to the following first order variability

k∑
t=1

∥wτ+i − w̄∥2 = k

∥∥∥∥∥k−1

k∑
i=1

uτ+i − ū

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

uτ+i − kū

∥∥∥∥∥
2

≤
k∑

t=1

∥uτ+i − ū∥2 .

As for the third part of the lemma,

k∑
t=1

∥wτ+i − w̄∥22 = k

∥∥∥∥∥k−1

k∑
i=1

uτ+i − ū

∥∥∥∥∥
2

2

≤ k−1

(
k∑

i=1

∥uτ+i − ū∥2

)2

≤
k∑

t=1

∥uτ+i − ū∥22 ,

where the last inequality is due to AM-QM inequality.

The final part of the proof is the uncentered version of Part 2 and 3, which follows

the same steps. In fact, any fixed reference point (for the variability) works, i.e., for

all v ∈ Rd,
T∑
t=1

∥wt − v∥2 ≤
T∑
t=1

∥ut − v∥2 ,

T∑
t=1

∥wt − v∥22 ≤
T∑
t=1

∥ut − v∥22 .

The second lemma is a simple one.
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Lemma 4.5. Consider any comparator sequence u1:T . For all t, we have ∥ut − ū∥2 ≤
P .

Proof of Lemma 4.5. Starting from the definition,

∥ut − ū∥2 =

∥∥∥∥∥ut −
T∑
i=1

T−1ui

∥∥∥∥∥
2

≤ T−1

T∑
i=1

∥ut − ui∥2 ,

and for all i, t ∈ [1 : T ], ∥ut − ui∥2 ≤ P due to triangle inequality.

Next, we are ready to prove the two main results of the Haar OLR algorithm.

4.7.4 Switching regret

For the fixed-T setting, we have

Lemma 4.6. For any m, T = 2m and u1:T ∈ RdT , Algorithm 4.4 with the hyperpa-

rameter ε = 1 guarantees

RegretT (u1:T ) = Õ
(
∥ū∥2

√
T +

√
KĒ

)
.

Proof of Lemma 4.6. Consider any scale j. Since the supports {I(j,l)}l do not overlap,

if u1:T shifts K times, then there are at most K choices of location l such that the

transform domain coefficient û(j,l) is nonzero. Furthermore, since there are log2 T

scales in total, there are at most K log2 T pairs of (i, l) such that û(j,l) is nonzero.

Therefore, using Cauchy-Schwarz and (4.12),

∑
j,l

∥∥û(j,l)∥∥
2
≤
√
K log2 T

√∑
j,l

∥û(j,l)∥22 =
√
KĒ log2 T .

Plugging this into (4.14), and further using (4.13) for ∥û∗∥2 complete the proof.

The anytime bound in general follows from the classical doubling trick. A twist is

that the analysis is slightly more involved than the standard one, e.g., (Shalev-Shwartz,

2011), as we also need to relate the comparator statistics on each block to those for

the entire signal u1:T .
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Theorem 4.2

Proof of Theorem 4.2. First, assume T can be exactly decomposed into m∗ segments

with dyadic lengths 21, . . . , 2m
∗
. We use ūm, Km and Ēm to represent the statistics of

the comparator sequence on the length 2m block, and let Im denote the time interval

that this block operates on. ū, K and S denote the statistics of the entire signal u1:T ,

cf., Table 4.1. From Lemma 4.6,

RegretT (u1:T ) ≤
m∗∑
m=1

Õ
(
∥ūm∥2

√
2m +

√
KmĒm

)
≤ Õ

[
∥ū∥2

(
m∗∑
m=1

√
2m

)
+

m∗∑
m=1

∥ūm − ū∥2
√
2m +

m∗∑
m=1

√
KmĒm

]
.

(4.15)

The first term follows from the standard doubling trick,

m∗∑
m=1

√
2m ≤

√
2√

2− 1

√
2m∗ = O

(√
T
)
. (4.16)

As for the second term in (4.15), using Cauchy-Schwarz,

m∗∑
m=1

∥ūm − ū∥2
√
2m ≤

√√√√m∗

(
m∗∑
m=1

2m ∥ūm − ū∥22

)
.

m∗ = O(log T ), and also observe that the sum (in the parenthesis) on the RHS equals

the second order variability of the following signal: for any time t in the m-th block,

the signal’s component is ūm ∈ Rd. This signal is a locally averaged version of the

original comparator u1:T , and local averaging decreases the variability. Formally, due

to Lemma 4.4, we have

m∗∑
m=1

∥ūm − ū∥2
√
2m ≤ Õ

(√
Ē
)
. (4.17)

For the third term in (4.15), using Cauchy-Schwarz again,

m∗∑
m=1

√
KmĒm ≤

√√√√( m∗∑
m=1

Km

)(
m∗∑
m=1

Ēm

)
≤
√
KĒ.
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The sum on Km is straightforward. The sum on Ēm follows the observation that on

the m-th block, ūm minimizes
∑

t∈Im ∥ut − x∥
2
2 with respect to x ∈ Rd.

Also, notice that the second term in (4.15) is dominated by the third term. If

K = 0, then both
√
Ē and

√
KĒ equal 0. If K ≥ 1, then

√
Ē ≤

√
KĒ. Therefore,

(4.15) can be written as

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
.

As for the general setting where T cannot be exactly decomposed into dyadic

blocks: consider the smallest T ∗ > T such that T ∗ can be decomposed. Due to

doubling intervals, T ∗ ≤ 2T . Let us consider a hypothetical length T ∗ game with

the rounds t > T constructed as follows: the loss gradient gt = 0 ∈ Rd, and ut = ū.

In this case, with K and Ē still representing the statistics of the length T sequence

u1:T , the number of switches on the entire time interval [1 : T ∗] is at most K + 1,

and the second order variability on [1 : T ∗] is Ē. The regret of any algorithm on this

hypothetical length T ∗ game is the same as the length T game, therefore bounding

the latter follows from bounding the former.

4.7.5 Path-length bound

Let us first consider the fixed T setting (Algorithm 4.4) and assume T = 2m for some

m. The static component (i.e., z∗) and the dynamic component (i.e., u1:T − z∗) of

u1:T are analyzed separately; the former is fairly standard, while the latter is more

challenging. We will first consider the dynamic component, and proceed in three steps.

Step 1 Considering any scale j, we aim to show
∑

l

∥∥û(j,l)∥∥
2
≤
√
P (j)S̄(j), which

relates the transform domain coefficients to the regularity of the reconstructed signals.

Lemma 4.7. For all (j, l) pair,∥∥û(j,l)∥∥
2
= 2−1/2

√
P (j,l)S̄(j,l),

and ∑
l

∥∥û(j,l)∥∥
2
≤ 2−1/2

√
P (j)S̄(j).
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Proof of Lemma 4.7. Let us start from the first part of this lemma, and express the

detail sequence z(j,l) more explicitly on its support I(j,l).

z
(j)
t =

2−j/2û(j,l), t ∈ I(j,l)+ ;

−2−j/2û(j,l), t ∈ I(j,l)− .

Rewriting P (j,l) and S̄(j,l),

P (j,l) =
2j l−1∑

t=2j(l−1)+1

∥∥∥z(j)t+1 − z
(j)
t

∥∥∥
2
= 21−j/2

∥∥û(j,l)∥∥
2
.

S̄(j,l) =
∑

t∈I(j,l)

∥∥∥z(j)t

∥∥∥
2
= 2−j/2

∥∥û(j,l)∥∥
2
· 2j = 2j/2

∥∥û(j,l)∥∥
2
,

which yields the equality in the lemma. The second part follows from Cauchy-

Schwarz.

Step 2 Showing that P (j) ≤ P and S̄(j) ≤ S̄. That is, the reconstructed signals

are easier than the original comparator u1:T . Here, P and S̄ should be considered

independently.

Lemma 4.8. For any u1:T and any scale parameter j∗, P (j∗) ≤ P .

Proof of Lemma 4.8. From the definition of P and the reconstruction of u1:T from

detail sequences,

P =
T−1∑
t=1

∥ut+1 − ut∥2 =
T−1∑
t=1

∥∥∥∥∥z∗t+1 − z∗t +
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥
2

=
T−1∑
t=1

∥∥∥∥∥∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥
2

,

where the last equality is due to z∗ being a constant sequence.

Consider removing “shorter” scales with 1 ≤ j < j∗, which is equivalent to local

averaging. Due to Lemma 4.4, the path length does not increase, i.e,

T−1∑
t=1

∥∥∥∥∥∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥
2

≥
T−1∑
t=1

∥∥∥∥∥∑
j≥j∗

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥
2

.
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Then, we can further remove the rounds where the path length is not counted in P (j∗),

i.e., when a time t ∈ I(j∗,l) but t+ 1 ∈ I(j∗,l+1).

RHS ≥
∑
l

2j
∗
l−1∑

t=2j∗ (l−1)+1

∥∥∥∥∥∑
j≥j∗

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥
2

.

Now, consider any location l, which determines the time interval I(j
∗,l) = [2j

∗
(l −

1) + 1 : 2j
∗
l]. Any detail sequence z(j) with scale j > j∗ is constant on this time

interval, thus removing it does not change the path length at all. Therefore,

P ≥
∑
l

2j
∗
l−1∑

t=2j∗ (l−1)+1

∥∥∥z(j∗)t+1 − z
(j∗)
t

∥∥∥
2
= P (j∗).

As for the first order variability,

Lemma 4.9. For any u1:T and any scale parameter j∗, S̄(j∗) ≤ S̄.

Proof of Lemma 4.9. From the definition, noticing that ū is entirely captured by the

all-one feature,

S̄ =
T∑
t=1

∥ut − ū∥2 =
T∑
t=1

∥∥∥∥∥
log2 T∑
j=1

z
(j)
t

∥∥∥∥∥
2

.

Due to Lemma 4.4, removing short scales amounts to local averaging, which decreases

the variability.

S̄ ≥
T∑
t=1

∥∥∥∥∥∑
j≥j∗

z
(j)
t

∥∥∥∥∥
2

=
∑
l

∑
t∈I(j∗,l)

∥∥∥∥∥z(j∗)t +
∑
j>j∗

z
(j)
t

∥∥∥∥∥
2

.

For any l, consider the support of the (j∗, l)-th feature, I(j
∗,l). Observe that∑

j>j∗ z
(j)
t is time invariant throughout I(j

∗,l), let us denote it as v ∈ Rd. Meanwhile,

for some w ∈ Rd, z
(j∗)
t equals w on I

(j∗,l)
+ , the first half of this interval, while being

−w on the second half I
(j∗,l)
− of this interval. Therefore,

∑
t∈I(j∗,l)

∥∥∥∥∥z(j∗)t +
∑
j>j∗

z
(j)
t

∥∥∥∥∥
2

= 2j
∗−1 (∥v + w∥2 + ∥v − w∥2)

≥ 2j
∗ ∥w∥2 =

∑
t∈I(j∗,l)

∥∥∥z(j∗)t

∥∥∥
2
.
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Combining the above,

S̄ ≥
∑
l

∑
t∈I(j∗,l)

∥∥∥z(j∗)t

∥∥∥
2
= S̄(j∗).

Step 3 Summarizing the above relations, and using the property that there are only

log2 T scales.

Lemma 4.10. For any m, T = 2m and u1:T ∈ RdT , Algorithm 4.4 with the hyperpa-

rameter ε = 1 guarantees

RegretT (u1:T ) = Õ
(
∥ū∥2

√
T +

√
PS̄
)
.

Proof of Lemma 4.10. Starting from the generic regret bound, (4.14) for Algorithm 4.4.

RegretT (u1:T ) ≤ εG+G

(
∥û∗∥2 +

∑
j,l

∥∥û(j,l)∥∥
2

)
· polylog

(
M,T, ε−1

)
.

Due to (4.13), ∥û∗∥2 = ∥ū∥2
√
T . Then, combining Lemma 4.7, 4.8 and 4.9,∑

j,l

∥∥û(j,l)∥∥
2
≤ O

(√
PS̄ log2 T

)
.

Plugging it into the generic bound completes the proof.

Finally, we relax our previous assumption of fixed dyadic time horizon T .

Theorem 4.3

Proof of Theorem 4.3. Similar to the analysis of the switching regret (Theorem 4.2),

we first consider the situation where the time horizon T can be exactly decomposed

into m∗ segments with dyadic lengths 21, . . . , 2m
∗
. In this situation, we have

RegretT (u1:T ) ≤ Õ

[
m∗∑
m=1

∥ūm∥2
√
2m +

m∗∑
m=1

√
PmS̄m

]

≤ Õ

[
∥ū∥2

√
T +

√
Ē +

m∗∑
m=1

√
PmS̄m

]
,

where the second line follows from the proof of Theorem 4.2, specifically Eq.(4.16)

and Eq.(4.17).
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Now let us consider the remaining sum on the RHS. Using Cauchy-Schwarz,

m∗∑
m=1

√
PmS̄m ≤

√√√√( m∗∑
m=1

Pm

)(
m∗∑
m=1

S̄m

)
≤

√√√√P

(
m∗∑
m=1

2m+1−2∑
t=2m−1

∥ut − ūm∥2

)
,

where

m∗∑
m=1

2m+1−2∑
t=2m−1

∥ut − ūm∥2 ≤
m∗∑
m=1

2m+1−2∑
t=2m−1

(∥ut − ū∥2 + ∥ūm − ū∥2) = S̄+
m∗∑
m=1

2m ∥ūm − ū∥2 .

The last sum on the RHS is the first order variability of a locally averaged version of

u1:T . Due to Lemma 4.4,
m∗∑
m=1

2m ∥ūm − ū∥2 ≤ S̄.

Combining everything above,

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T +

√
Ē +

√
PS̄
)
.

It remains to show that
√
Ē ≤

√
PS̄, thus the former can be absorbed into the

latter. Plugging in the definitions, this is equivalent to showing

T∑
t=1

∥ut − ū∥22 ≤
T∑
t=1

P ∥ut − ū∥2 ,

and it suffices to prove ∥ut − ū∥ ≤ P for all t ∈ [1 : T ]. This is completed in Lemma 4.5.

Till this point, we have shown the desirable result in the situation of “exact dyadic

partitioning”.

To complete the proof, we turn to the general situation where T cannot be

partitioned into dyadic blocks. This follows from a similar “padding” construction

from the proof of Theorem 4.2. Let T ∗ = 2⌈log2 T ⌉, and by definition, T ∗ ≤ 2T . Let us

consider a hypothetical length T ∗ game with the rounds t > T constructed as follows:

the loss gradient gt = 0 ∈ Rd, and ut = ū. Then, the regret of any algorithm on the

length T ∗ hypothetical game equals its regret on the actual length T game, and the

regret bound for the former applies to the latter as well: if we write P ∗ and S̄∗ as the
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statistics of the extended length T ∗ comparator, then

RegretT (u1:T ) ≤ Õ
(
∥ū∥2

√
T ∗ +

√
P ∗S̄∗

)
.

Clearly, S̄∗ = S̄ and T ∗ ≤ 2T . As for the path length, P ∗ = P + ∥uT − ū∥2, and due

to Lemma 4.5, ∥uT − ū∥2 ≤ P . Plugging it back completes the proof.
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Chapter 5

Conclusion and future work

Concluding this dissertation, we summarize our contributions as follows.

• In the first part, we demonstrated how to design better comparator adaptive

online learning algorithms using a continuous time scaling approach. Compared

to existing works, the new approach reduces the amount of heuristic guessing, and

leads to quantitatively stronger performance guarantees in certain scenarios. The

workflow is first developed in the standard OCO setting (Chapter 2), and then

extended to the variant of OCO with switching costs (Chapter 3). Downstream

benefits in the expert problem are also presented.

• The second part of the dissertation uses temporal features to construct better

adaptive algorithms for nonstationary environments. Inspired by the ideas in

signal processing, we run static comparator adaptive online learning algorithms

on a user-specified transform domain, which effectively decomposes the tasks of

regret minimization and (temporal) function approximation. The final result is

a quantitative improvement over the state of the art.

At the end of each chapter, we discussed fairly specific directions for future works.

Here we discuss some future directions on a higher level, which are essentially topics

we aim to explore in the years to come.

• A central idea in adaptive online learning (Section 1.3) is to introduce Bayesian

prior knowledge. Evidently, this bears much similarity to Bayesian statistics,
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but to the best of our knowledge, the characterization of their connection is still

quite far from being complete in the existing literature. Addressing this gap is

an intriguing future direction, which could lead to algorithmic benefits in both

fields.

• Regarding the continuous time scaling approach, a particular interesting question

is the role of an adversarial environment in the continuous time limit. It is long

known that PDEs, which we obtained by scaling the minimax Bellman equation

towards the continuous time limit, are intrinsically connected to stochastic

processes and stochastic decision making (e.g., through the Feynman-Kac for-

mula). Meanwhile, within the field of online learning, there is evidence (Freund,

2009; Harvey et al., 2020) suggesting a strong parallel relation between the

discrete time adversarial problem and the continuous time stochastic problem.

We are interested in digging deeper into the literature (especially those with

a mathematical focus) and completing the missing pieces (if there are any).

This may bring a better understanding to the “best-of-both-worlds” results in

online learning (i.e., performance guarantees that are simultaneously optimal in

stochastic and adversarial environments).

• The second part of this dissertation relies critically on complexity measures of

function classes. This is a rich topic on its own, and often studied in related

fields such as nonparametric statistics and statistical learning theory. Due to

our currently limited scope, the connection to these related fields has not been

investigated deeply in this dissertation. In this regard, it could be interesting to

extend our results to other (possibly combinatorial) complexity measures, and

further investigate the resulting algorithmic benefits.

• Finally, we believe that adaptive online learning has significant potential in many
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real world problems, which has not been sufficiently explored yet. Addressing this

gap between theory and practice requires a deeper dive into specific application

domains and exploiting the corresponding domain structures. As a next step,

we plan to investigate a diverse set of applications, including but not limited to

finance, robotic control and physical science.
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